DT-212D, DT-212DC1, DT-212DC2

DT-212 series filters are regarded as universal filters capable of controlling frequencies with digital signal. The following three types of outputs are to be obtained simultaneously: low pass filter with $12 \mathrm{~dB} /$ oct of rolloff, high pass filter with $12 \mathrm{~dB} /$ oct of rolloff, and band pass filter with 6dB/oct of bandwidth. DT-212 series filters facilitate the settings of gain and Q through the adoption of the external resistors, besides the configuration of filters possessing various characteristics and high-order filters.
Frequency is controlled by BCD 3 digits (12 lines). The frequency range falls into three types: 1 Hz to 1.599 kHz (DT-212DC1), 100 Hz to 159.9 kHz (DT-212DC2), and a range to be designated with the external capacitors (DT-212D).

VBuilt-in operational amplifier

Input bias current		200nA(typ)
ft		10MHz(typ)
Slew rate		8V/ $/ \mathrm{s}$ (typ)
∇ Others		
Supply voltage		$\pm 15 \mathrm{~V} \pm 10 \%+5 \mathrm{~V} \pm 10 \%$
Quiescent current		$\begin{aligned} & \text { typ }:+15 \mathrm{~mA} /-18 \mathrm{~mA},+2.2 \mathrm{~mA} \\ & \mathrm{max}:+23 \mathrm{~mA} /-27 \mathrm{~mA},+3.3 \mathrm{~mA} \\ & \hline \end{aligned}$
Temperature/ humidity range	Operation	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 10$ to $95 \% \mathrm{RH}$
	Storage	$-30^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}, 10$ to $80 \% \mathrm{RH}$
Dimensions		$54.4 \times 33.7 \times 9.4 \mathrm{~mm}$, Type HA

*1: Low pass outputs are DC-coupled. High frequency characteristics of high pass outputs: Max. 500kHz
*2: Measurement point: fc/2 (low pass), 2fc (high pass), fo (band pass)

Block diagram

Pinout diagram

Basic connection diagram 2-pole low pass/high pass filters

Equation of gain GLP $=\mathrm{GHP}_{\mathrm{H}}=\frac{10}{\mathrm{R}_{\mathrm{G}}}$ (I/O phase inversion)
Equation of Q

$$
\begin{aligned}
& \mathrm{Q}=\frac{\mathrm{R}_{\mathrm{G}}}{\mathrm{R}_{\mathrm{Q}}} \frac{\mathrm{R}_{\mathrm{Q}}+10}{2 \mathrm{R}_{\mathrm{G}}+10} \\
& \mathrm{RQ}=\frac{10 \mathrm{R}_{\mathrm{G}}}{\left(2 \mathrm{R}_{\mathrm{G}}+10\right) \mathrm{Q}-\mathrm{R}_{\mathrm{G}}}(\mathrm{k} \Omega)
\end{aligned}
$$

Units: R_{G} and Rq_{Q} in $\mathrm{k} \Omega$
E.g.: Determine RG and RQ of Butterworth and Bessel characteristics. (Gain $=2$, a $12 \mathrm{~dB} /$ oct low pass filter assigned)

$$
\begin{aligned}
\mathrm{R}_{\mathrm{G}} & =\frac{10}{\mathrm{G}_{\mathrm{LP}}}=5 \mathrm{k} \Omega \\
\mathrm{R}_{\mathrm{Q}} & =\frac{50}{20 \mathrm{Q}-5} \\
& =5.469 \mathrm{k} \Omega(\mathrm{Q}=0.70711, \text { Butterworth }) \\
& =7.637 \mathrm{k} \Omega(\mathrm{Q}=0.57735, \text { Bessel })
\end{aligned}
$$

Basic connection diagram 1-pole pair band pass filters

Equation of gain $G_{B P}=\frac{10}{R_{G}}(I / O$ phase inversion $)$
Equation of Q

$$
\mathrm{Q}=0.5+\frac{5}{\mathrm{R}_{\mathrm{G}}}+\frac{5}{\mathrm{RQ}_{\mathrm{Q}}}
$$

$$
\mathrm{Re}=\frac{10}{2 \mathrm{Q}-1-\mathrm{GBP}}(\mathrm{k} \Omega)
$$

Units: R_{G} and R_{Q} in $\mathrm{k} \Omega$
E.g.: Determine R_{G} and Re_{Q} when Q is set at 2, 5, and 10. $($ Gain $=5$, a 1-pole pair band pass filter assigned $)$

$$
\begin{aligned}
\mathrm{R}_{\mathrm{G}} & =\frac{10}{\mathrm{GBP}_{B P}}=2 \mathrm{k} \Omega \\
\mathrm{R}_{\mathrm{G}} & =\frac{10}{2 \mathrm{Q}-1-5} \\
& =-5 \mathrm{k} \Omega(\mathrm{Q}=2)^{*} \\
& =2.5 \mathrm{k} \Omega(\mathrm{Q}=5) \\
& =0.71 \mathrm{k} \Omega(\mathrm{Q}=10)
\end{aligned}
$$

*The following specifications should be satisfied:
$Q \geq 3$ is obtained if a gain is " 5 ", and the maximum gain is " 3 " if Q is set at 2 .

Frequency setting

DT-212 series filters allow frequency setting through external contacts or digital signal. The frequency setting (BCD: 3 digits) is completed by assigning weights to the relevant input pins, as shown below. Internal logic reaches "Hi" if +5 V is placed to the input pin (bit) and "Lo" if the input pin is set at 0 V or open. The sum of bit weights (Hi) denotes frequency, and the frequency (fc) - sum (N) relationship is represented in the following equations.

$$
\begin{array}{ll}
\text { DT-212DC1 } & \mathrm{fc}=\mathrm{N}(\mathrm{~Hz}) \\
\text { DT-212DC2 } & \mathrm{fc}=100 \mathrm{~N}(\mathrm{~Hz}) \\
\text { DT-212D } & \mathrm{fc}=\frac{\mathrm{N}}{20 \cdot \mathrm{CEXT}}(\mathrm{~Hz})
\end{array}
$$

DT-212DC1 built-in capacitor: 50000 pF
DT-212DC2 built-in capacitor: 500 pF

Offset voltage adjustment

- When low pass or high pass output is used

- When band pass output is used

Operation in TTL level requires a voltage of +3.5 or more and a power of +5 or less when Hi level is placed. If the voltage does not attain +3.5 V , connect a proper pull-up resistor to TTL output.

-Supply power and GND connection

DT-212 series filters are powered by $\pm 15 \mathrm{~V}$ and +5 V , and also allow a power of +5 V to be diverted from +15 V .

- When only $\pm 15 \mathrm{~V}$ is supplied

A power of +5 V is derived from the connection shown in the following diagram. The Hi level of the logic input signal should be +5.3 V at the maximum due to fluctuations in Zener voltage.
The quiescent current for $\pm 15 \mathrm{~V}$ obtains 22 mA (typ) after an increase of 7 mA .

- When $\pm 15 \mathrm{~V}$ and +5 V are supplied

The connection of Pins (36) and (37) requires caution to prevent the return current from flowing into the analog circuit from +5 V of logic power. Pins (36) and (37) are to be connected on the power side as shown below.
Be sure to use a power of +5 V that is small in ripple and pulse noise as with $\pm 15 \mathrm{~V}$. The method with the use of only $\pm 15 \mathrm{~V}$ is adopted if a proper power of +5 V fails to be obtained.

