
INSTRUCTION MANUAL

PEWA Messtechnik GmbH

Weidenweg 21 58239 Schwerte

Tel.: 02304-96109-0 Fax: 02304-96109-88 E-Mail: info@pewa.de Homepage: www.pewa.de

POWER QUALITY ANALYZER

KEW 6310

KYORITSU ELECTRICAL INSTRUMENTS WORKS, LTD. TOKYO, JAPAN

Unpacking	g	5
Safety wa	rnings ·····	7
	nstrument Overview	
1.1	Functional Overview	
1.2	Features	1.3
1.3	Connection Diagram	1.5
1.4	Measuring Procedure	
1.5	Outline of max demand measurement concept	
	nstrument Layout	
2.1	Front View	
2.2	Connector	
2.3	Side Face	
2.4	Battery Case	
2.5	Marks displayed on the LCD	2.6
	Setting started	
3.1	Preparation	
	3.1.1 Putting Input terminal plate on the Input terminal	
2.2	3.1.2 Attaching Markers to Voltage test leads and Clamp sensors	3.2
3.2	Power Supply	
	3.2.2 AC Power Supply	
3.3	Voltage test leads and Clamp sensor connection	
3.4	Start KEW6310	3.10
0.4		
	•	
	3.4.2 Error message ······	
Section 4 S		
4.1	List of Setting items	4.1
4.2	Settings	
	4.2.1 Basic Setting	
	4.2.2 Measurement Setting	
	4.2.3 Save Setting	
Castian EVA	4.2.4 Other Setting	
	Viring Configurations	
5.1	Important preliminary checks	
5.2 5.3	Basic Wiring Configuration	
5.5	5.3.1 Checking procedure	
	5.3.2 Criteria of Judgment	
5.4	Using supplementary VT/CT's	
∪. ¬	Coming Cappion Tonically V 1/O 1 C	0.0

Section 6	3 Instanta	neous value measurement	6.1
6.	1 Indic	cations on LCD	6.1
	6.1.1		6.1
	6.1.2	Switching displays	6.8
	6.1.3	Zoom	6.9
6.		suring Procedure	6.11
6.	3 Data	a saving	
	6.3.1	3	
	6.3.2	S .	
	6.3.3		
6.		ges and Over-range indications	
	6.4.1	3-3	
o .: -	6.4.2		
		ion measurement	
/		ations on LCD	
	7.1.1		
	7.1.2	3 - 1 - 7 -	
	7.1.3		
	.2 Mea	suring Procedure	······ 7.4
7	.3 Data	ı saving	
	7.3.1		
	7.3.2		
	7.3.3		
7	.4 Ran	ges and Over-range indications	
	7.4.1		
	7.4.2	3	
		d measurement ·····	
8.	1 Indic	cations on LCD	
	8.1.1	= 10 10 10 10 10 10 10 10	
	8.1.2		
	8.1.3		
8.		suring Procedure	
8.	3 Data	a saving	
	8.3.1	Saving Demand measurement data	8.8
	8.3.2	Limitations of saving	8.10
	8.3.3		
8.	4 Ran	ges and Over-range indications	
	8.4.1		
	8.4.2	3	
Section 9	WAVE I		
9.	1 Indic	cations on LCD	
	9.1.1	Display screen	
	9.1.2		
	9.1.3		
9.	2 Mea	suring Procedure	9.6

	9.3	Data sa	aving		. (9.7
		9.3.1	Saving Procedure		ç	9.7
		9.3.2	Limitations of saving		ç	9.9
		9.3.3	Saved data		ç	9.9
	9.4	Ranges	s and Over-range indications	🤉	9.	.12
		9.4.1	Ranges			
		9.4.2	Over-range / Bar indication	9	9.	.12
Section	n 10 H	armonio	: Analysis	<i>'</i>	1().1
	10.1	Indica	tions on LCD	<i>'</i>	1().1
		10.1.1	Display screen	<i>'</i>	1(ე.1
		10.1.2	Switching displays	<i>'</i>	1().4
		10.1.3	Logarithm display	<i>'</i>	1(ე.5
	10.2	Meas	uring Procedure	<i>'</i>	1(ე.6
	10.3	Data s	saving	ʻ	1(ე.7
		10.3.1	Saving Procedure	<i>'</i>	1().7
		10.3.2	Limitations of saving	<i>'</i>	1(ე.9
		10.3.3	Saved data	<i>'</i>	1(ე.9
Section	n 11 P	ower Qu	uality	· · · · · ·	1	1.1
	11.1	Displa	ay screen ·····		1	1.2
	11.2	Swell	/ Dip / Int measurement			
		11.2.1	Display screen			
		11.2.2	Measuring Procedure			
		11.2.3	Data saving			
		11.2.4	Limitations of saving			
		11.2.5	Saved data			_
	11.3		ient measurement ······			
		11.3.1	Display screen			
		11.3.2	Measuring Procedure			
		11.3.3	Data saving			
		11.3.4	Limitations of saving			
		11.3.5	Saved data			
	11.4		n current measurement			_
		11.4.1	Display screen			
		11.4.2	Measuring Procedure			
		11.4.3	Data saving			
		11.4.4	Limitations of saving			
	44.5	11.4.5	Saved data			
	11.5		ance rate measurement			
		11.5.1	Display screen ······ Measuring Procedure ······			
		11.5.2 11.5.3	Data saving			
		11.5.3	Limitations of saving			
		11.5.4	Saved data			

11.6	Flicker		
	11.6.1 Display screen	1′	1.33
	11.6.2 Measuring Procedure		
	11.6.3 Data saving		
	11.6.4 Limitations of saving		
	11.6.5 Saved data		
11.7	Capacitance Calculation-Sizing of capacitor banks for Power factor correct		
(PFC)			
	11.7.1 Display screen		
	11.7.2 Measuring Procedure		
	11.7.3 Data saving		
	11.7.4 Limitations of saving	 - 1≀	1. 4 0 1 <i>1</i> 0
Coation 12			
	CF card/ Internal memory		
12.1	Instrument and CF card / Internal memory	···· ′	12.1
12.2	Placing / removing the CF card	···· ′	12.4
12.3	CF card and Internal memory	<i>'</i>	12.6
12.4	Backup memory	´	12.9
Section 13 (Communication function/ Interface software	<i>'</i>	13.1
13.1	Software Installation (KEW PQA MASTER)	<i>'</i>	13.2
13.2	USB driver installation	<i>'</i>	134
13.3	Starting "KEW PQA MASTER"		
13.4	USB driver un-installation	<i>.</i>	10.0 12.7
	Other functions		
14.1	Input/ Output terminals	, ′	14.1
14.2	Getting power from measured lines	′	14.2
14.3	Auto-ranging	···· ′	14.4
14.4	Operation at AC power interruption	´	14.4
Section 15	Froubleshooting	<i>'</i>	15.1
15.1	General troubleshooting	′	15.1
15.2	Error messages and actions	<i>'</i>	15.2
	Specification		
16.1	General specification ······	<i>,</i>	16.1
16.2	Inst measurement		
16.2	Integration measurement		
16.4	Demand measurement		16.4 16.6
16.5	Waveform measurement		
16.6	Harmonic measurement		16.6
16.7	Power quality	···· ′	16.7
	16.7.1 Swell/ Dip/ Int measurement		
	16.7.2 Transient measurement		
	16.7.3 Inrush current measurement		
	16.7.4 Unbalance rate measurement ————————————————————————————————————	······································	10./
46.0			
16.8	Other specifications		
16.9	Specification of Clamp sensor	1	0.11

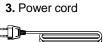
Unpacking Procedure KEW6310

• Unpacking Procedure

We thank you for purchasing the Power Quality Analyzer "KEW6310". Please check the contents and instrument before use.

• Items listed below are included with the standard set:

1	Main unit	KEW6310 : 1 unit	
2	Voltage test lead	MODEL7141 : 1 set (red, black, green, blue: 1pce for each)	
3	Power cord	MODEL7170 : 1 pce	
4	USB cord	MODEL7148 : 1 pce	
5	Quick manual	1 pce	
6	CD-ROM	1 pce	
7	Battery	Alkaline size AA battery LR6: 6pcs	
8	Compact flash card	1 pce	
9	Carrying case	MODEL9125 : 1 pce	
10	Input terminal plate	1 pce	
11	Cable marker	8-color x 4pcs each (red, blue, yellow, green, brown, gray, black, white)	
12	Card Reader	MODEL8319	


Optional parts

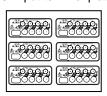
Optio	Optional parto		
13	Clamp sensor	Depending on model purchased	
14	Instruction manual for clamp sensor	1 pce	
15	Compact flash card	64M/ 128M/ 256M/ 1GB	
16	Carrying case for Main unit (with magnet)	MODEL9132	
17	Power supply adapter	MODEL8312	

2. Voltage test lead

4. USB cord

5. Quick manual

6. CD-ROM



8. Compact flash card

10. Input terminal plate

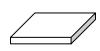
9. Carrying case

11. Cable marker

12. Card Reader: M-8319

KEW6310 Unpacking Procedure

13. Clamp sensor (depending on model purchased)



50A Type(<i>φ</i> 24mm)	M-8128
100A Type(<i>φ</i> 24mm)	M-8127
200A Type(φ 40mm)	M-8126
500A Type(φ 40mm)	M-8125
1000A Type(φ 68mm)	M-8124
3000A Type(ϕ 150mm)	M-8129
10A Type(<i>ф</i> 24mm)	M-8146
10A Type(<i>ф</i> 40mm)	M-8147
10A Type(<i>ф</i> 68mm)	M-8148
1A Type(<i>ф</i> 24mm)	M-8141
1A Type(φ 40mm)	M-8142
1A Type(<i>ф</i> 68mm)	M-8143

14. Instruction manual for clamp sensor

15. Compact flash card

32MB	M-8305
64MB	M-8306
128MB	M-8307
256MB	M-8322
1GB	M-8323

Storage

Store the items as shown below after use.

16. Carrying case for Main unit **17.** Power supply adapter

• In case any of the items listed above are found to be damaged or missing or if the printing is unclear, please contact your local KYORITSU distributor from where the instrument was purchased.

KEW6310 6

Safety warnings KEW6310

Safety warnings

This instrument has been designed, manufactured and tested according to IEC 61010: Safety requirements for Electronic Measuring apparatus, and delivered in the best condition after passing quality control tests.

This instruction manual contains warnings and safety rules which have to be observed by the user to ensure safe operation of the instrument and to maintain it in safe condition. Therefore, read through these operating instructions before using the instrument.

- Read through and understand the instructions contained in this manual before using the instrument.
- Keep the manual at hand to enable quick reference whenever necessary.
- The instrument is to be used only in its intended applications.
- Understand and follow all the safety instructions contained in the manual.
- Read the enclosed Quick manual after reading this instruction manual.
- As to the Clamp sensor use, refer to the instruction manual supplied with the sensor.

It is essential that the above instructions are adhered to. Failure to follow the above instructions may cause injury, instrument damage and/or damage to equipment under test.

The symbol \bigwedge indicated on the instrument, means that the user must refer to the related parts in the manual for safe operation of the instrument. It is essential to read the instructions wherever the \bigwedge symbol appears in the manual.

DANGER: is reserved for conditions and actions that are likely to cause

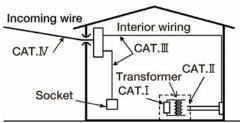
serious or fatal injury.

WARNING is reserved for conditions and actions that can cause serious or

fatal injury.

CAUTION is reserved for conditions and actions that can cause injury or

instrument damage.


This instrument meets CAT. III 600V. To ensure safe operation of measuring instruments, IEC 61010 establishes safety standards for various electrical environments, categorized as CAT.I to CAT.IV, and called measurement categories. Higher-numbered categories correspond to electrical environments with greater momentary energy, so a measuring instrument designed for CAT.III environments can endure greater momentary energy than one designed for CAT.II.

CAT.I: Secondary electrical circuits connected to an AC electrical outlet through a transformer or similar device.

CAT.II: Primary electrical circuits of equipment connected to an AC electrical outlet by a power cord.

CAT.III: Primary electrical circuits of the equipment connected directly to the distribution panel, and feeders from the distribution panel to outlets.

CAT.IV: The circuit from the service drop to the service entrance, and to the power meter and primary overcurrent protection device (distribution panel).

KEW6310 Safety warnings

♠ DANGER

- Verify proper operation on a known source before use.
- Verify proper operation on a known source before use or taking action as a result of the indication of the instrument.
- Never make measurement on a circuit in which the electrical potential exceeds AC600V.
- Do not attempt to make measurement in the presence of flammable gasses. Otherwise, the use of the instrument may cause sparking, which can lead to an explosion.
- Never attempt to use the instrument if its surface or your hand are wet.

- Measurement -

- Do not exceed the maximum allowable input of any measuring range.
- Never open the Battery cover and CF card connector cover during a measurement.

- Battery -

- Never open the Battery Cover during a measurement.
- Brand and type of the batteries to be used should be harmonized.

- Power cord -

- Connect the Power cord mains plug to a mains socket outlet
- Use only the Power cord supplied with this instrument.

- Power supply connector -

 Never touch the Power supply connector although it is insulated while the instrument is operating with batteries.

- Voltage test leads -

- Use only the ones supplied with this instrument.
- Confirm that the measured voltage rating of the test lead is not exceeded.
- Do not connect a Voltage test lead unless required for measuring the parameters desired.
- Connect Voltage test leads to the instrument first, and only then connect them to the circuit under test.
- Never disconnect Voltage test leads while the instrument is in use.
- Connect to the downstream side of a circuit breaker since a current capacity at the upstream side is large.
- Do not touch two lines under test with the metal tips of the test leads.
- Never touch the metal tips of the test leads.

- Clamp sensor -

- Use only the ones dedicated for this instrument.
- Confirm that the measured voltage rating of the test lead is not exceeded.
- Do not connect a Camp sensor unless required for measuring the parameters desired.
- Connect sensors to the instrument first, and only then connect them to the circuit under test.
- Never disconnect sensors while the instrument is in use.
- Connect to the downstream side of a circuit breaker since a current capacity at the upstream side is large.
- Do not touch two lines under test with the metal tips of the test leads.

Safety warnings KEW6310

- Connection -

- Confirm that the instrument is off, and then connect the Power cord.
- Connect the Voltage test leads and clamp sensors to the instrument first. Cord to be firmly inserted.
- Never attempt to make any measurement if any abnormal conditions, such as a broken cover or exposed metal parts are present on the Instrument, Voltage test leads, Power cord and Clamp sensor.

- Measurement -

• Ensure that the Current input terminal cover, USB connector cover and CF card connector cover are closed when not in use during a measurement.

- Not in use for a long period -

• Remove the Power cord from the outlet if the instrument will not be in use for a long period.

- Repair -

• Do not install substitute parts or make any modification to the instrument. Return the instrument to your local KYORITSU distributor for repair or re-calibration in case of suspected faulty operation.

- Battery -

- Do not try to replace the batteries if the surface of the instrument is wet.
- Ensure that the Power cord, Voltage test leads and Clamp sensor are removed from the instrument, and that the instrument is switched off when opening the Battery cover for battery replacement.
- Do not use dry-cell batteries with the Selector Switch set to "RECHARGEABLE BATTERY" position. It may cause electrical shock accident.
- Never mix new and old batteries.
- Install batteries in correct polarity as marked inside.

- Power cord -

- Do not use the damaged cord.
- Don't put heavy things on, step on or pinch the cord, moreover, not to touch any heating material.
- When unplugging the cord from the mains socket outlet, do so by removing the plug first and not by pulling the Power cord.

- Measures against abnormal symptoms -

• If the instrument begins to emit smoke, becomes too hot, or gives off an unusual smell, immediately power it off and disconnect the power cord from the outlet. Also power off the power to the object under test. If any anomalies as noted, contact your local KYORITSU distributor.

- Use of protective gears -

• Use insulated gloves, boots or head gears at measurements to ensure user's safety.

KEW6310 Safety warnings

⚠ CAUTION

- Caution should be taken since conductors under test may be hot.
- Never apply currents or voltages exceeding the maximum allowable input for the instrument for a long time.
- Don't apply currents or voltages to Voltage test leads or Clamp sensors while the instrument is in off status.
- Don't use the instrument at dusty places or to be spattered.
- Don't use the instrument under a strong electric storm or in the vicinity of energized object.
- Never give strong vibrations or drop shocks.
- Do not place or remove a CF card while CF card is being accessed. (flashes while CF card is being accessed.) Otherwise saved data in the card or the instrument may be damaged.

- Clamp sensor -

• Do not bend or pull the cable of the Clamp sensor.

- Treatment after use -

- Power off the instrument and disconnect the Power cord, Voltage test leads and Clamp sensors from the instrument.
- Remove the batteries if the instrument is to be stored and will not be in use for a long period.
- Remove the CF card when carrying the instrument.
- Never give strong vibrations or drop shocks when carrying the instrument.
- Do not expose the instrument to direct sunlight, high temperatures, humidity or dew.
- Use a damp cloth with neutral detergent for cleaning the instrument. Do not use abrasives or solvents.
- Do not store the instrument if it is wet.

Carefully read and follow the instructions: **ADANGER**, **AWARNING**, **ACAUTION** and **NOTE** () described in each section.

The following symbols are used in this manual:

<	User must refer to the explanations in the instruction manual.
	Instrument with double or reinforced insulation, Class II insulation
?	AC
4	(Functional) Earth terminal

KEW6310 10

1.1 Functional Overview KEW6310

1. Instrument Overview

1. 1 Functional Overview

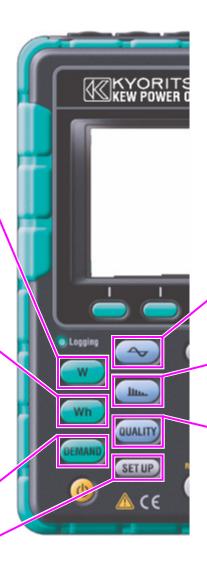
Instantaneous value measurement

Measures average/max/min values of instantaneous values of current, voltage and electric power.

See Section 6 "Instantaneous value measurement" for further details.

Integration value measurement

Measures active/ apparent/ reactive powers on each CH.


See Section 7 "Integration value measurement" for further details.

Demand measurement

Measures demand values based on the preset target values. Digital output signals alert the user that the predicted value may exceed a target value.

See **Section 8** "**DEMAND Measurement**" for further details.

SET UP

Setting of KEW6310 or for measurements

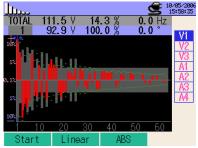
33142	<u> </u>	10/23/2006 14:52:30
Basic	essurement	lthers.
Wiring	@3P4W >	d+1A
V Range	30	OV.
VT ratio	1.	00
	1, 2, 3ch	4ch
Clamp	8125	8125
A Range	200. 0A	200. 0A
CT ratio	1.00	1.00
Filter		
DC V 10	ch: <mark>5V</mark> 2ch: 5V Fred	1 50Hz
	№ Detect	

See "Setting (Section 4)" for further details.

1.1 KEW6310

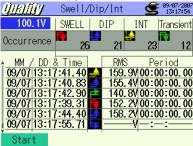
KEW6310 1.1 Functional Overview

Measurement at WAVE Range


Displays vector / waveform of voltages and currents per CH

See "WAVE Range (Section 9)" for further details.

Harmonic measurement


Measures / analyzes harmonic components of current & voltages

See "Harmonic Analysis (Section 10)" for further details.

Power quality analysis

Measures swell, dip, int, transient, inrush current, unbalance ratio and flicker, and also simulates power factor correction with capacitor banks.

* Flicker measurement function is only available with ver.2.00 or later

See "Power Quality (Section 11)" for further details.

KEW6310 1.2

1.2 Features KEW6310

1.2 Features

This is a Power Quality Analyzer that can be used for various wiring systems. It can be used for simple measurements of instantaneous/ integration/ demand values, and also for monitoring waveforms and vectors, analyzing harmonics and measuring the fluctuations in supply voltages and can perform Capacitance Calculation. Data can be saved either in the internal memory or a CF card, and can be transferred to a PC either via a USB lead or a CF Card reader.

Safety Construction

Designed to meet the international safety standard IEC 61010-1 CAT.III 600V/ CATII. 1000V

Wiring configuration

KEW6310 supports: Single-phase 2-wire, Single-phase 3-wire, Three-phase 3-wire, Three-phase 4-wire.

Measurement and caluclation

KEW6310 measures voltage (RMS), current (RMS), and calculates active/reactive/apparent power, power factor, phase angle, frequency, neutral current and active/ reactive/ apparent electric energy. (RMS)

Demand measurment

Electricity consumption can be easily monitored so as not to exceed the target maximum demand values.

Waveform / Vector display

Voltage and current can be displayed by waveform or vector.

Harmonic analysis

Harmonic components of voltage and current can be measured and analyzed.

Power quality analysis

Measuring Swell/ Dip/ Int, Transient, Inrush current, Unbalance ratio and flicker*, moreover, simulating power factor correction with capacitor banks.

* Flicker measurement function is only available with ver.2.00 or later.

1.3 KEW6310

KEW6310 1.2 Features

Saving data

KEW6310 is endowed with a logging function with a preset recording interval. Data can be saved by manual operation or at pre-set time & date. Screen data can be saved by using Print Screen function.

Dual power supply system

KEW6310 operates either with AC power supply or with batteries. Both dry-cell batteries (alkaline) and rechargeable batteries (Ni-MH) can be used. In the event of interruption, while operating with AC power supply, power to the instrument is automatically restored by the batteries in the instrument.

Large display

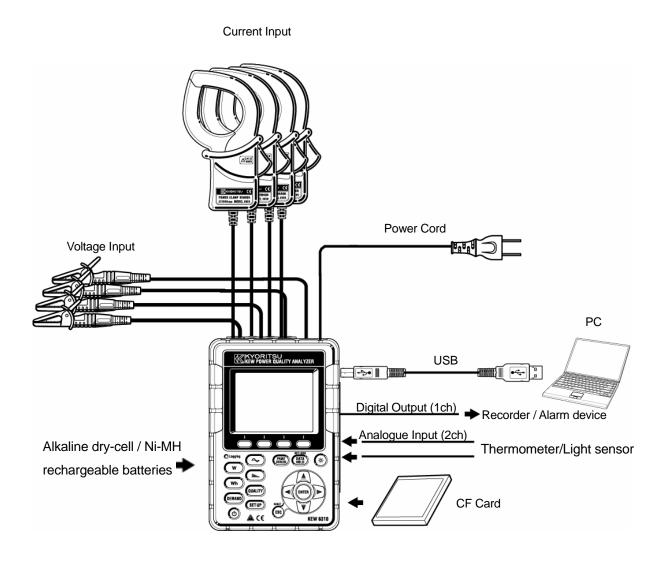
Color display with large screen

Light & compact design

Clamp sensor type, compact and light weight design

Application

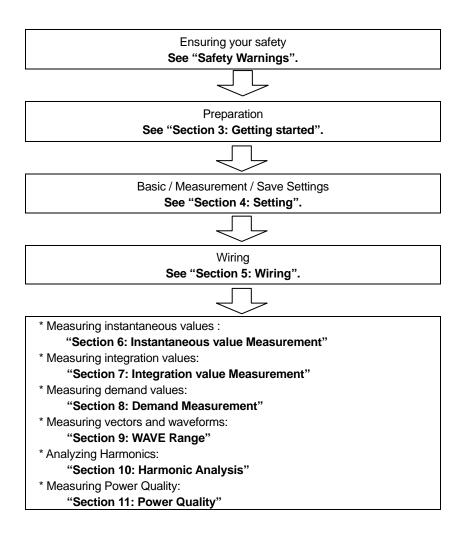
Data in the internal memory or CF card can be transferred to a PC via a USB lead or a CF Card reader. As well supplied software facilitates setting, optional analysis software facilitates data analysis.


Input/output function

Analogue signals from thermometers or light sensors can be measured simultaneously with electrical power data via 2 analogue inputs (DC voltage); signals exceeding preset threshold values at each range can be transmitted to alarm devices via 1 digital output (DC voltage)

KEW6310 1.4

1.3 Connection Diagram KEW6310


1.3 Connection Diagram

1.5 KEW6310

1.4 Measuring Procedure

Steps for measurement

KEW6310 1.6

1.5 Outline of max demand measurement concept

In some countries, large consumers of electricity will usually have a maximum demand contract with the power company. Such contract varies from country to country. The following is an explanation of a typical Japanese maximum demand contract.

Maximum Demand contract

In such a contract the electricity tariff rates (i.e. for kWhr units) are based upon the consumer's maximum power demand. The maximum demand is the maximum of average powers recorded over a 30min intervals. This is measured by the maximum demand meter belonging to the power company. Let's assume that a power company has the following applicable rates.

\$2 per KWhr unit for a recorded max demand 300KW during a year

\$4 per KWhr unit for a recorded max demand 500KW during a year

\$5 per KWhr unit for a recorded max demand 600KW during a year

Assuming that the consumer is on the 500kW/year rate (ie. \$4), and the recorded max demand during a particular day(say 15th January) is 600kW. Then the new applicable rate from 1st February onwards will be the 600kW/year rate (ie. \$5) for the next 365 days. If a year later, on February 1st the recorded maximum demand is 300kW, then the new applicable rates will be changed to 300kW/year rate (i.e. \$2) for the subsequent 365 days. However if during this period, the max demand goes up again, and say 600kW is recorded on 15th March, the applicable rates change again to the 600kW/year rate (i.e. \$5) for the subsequent 365 days.

• Benefits of maximum demand control

It is thus important for consumers with such contracts to monitor closely fluctuations in their power demand to ensure that their max demand limits are not exceeded and thus incur higher tariffs. Maximum Demand control is more effective in countries with higher electricity tariffs.

Status of maximum demand contract

In the past, in Japan, only consumers whose electricity supply was rated at 600kW or more used to enter into a demand contract. However, nowadays power companies install maximum demand meters at all consumers whose supply is rated 70kW or more.

Maximum Demand measurement limitations

N.B. The readings from power company maximum demand meter and from the 6300 will not match completely due to an obvious time-lag difference in the start of the integration period (eg.30mins) over which the max demand is taken.

1.7 KEW6310

KEW6310 1.8

2.1 Front View KEW6310

2. Instrument Layout

2.1 Front View

Display (LCD) / Keys

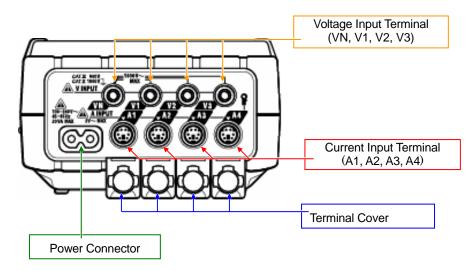
Green lights up : Recording & measuring

Green flashes : Stand-by (lights up when preset time comes)

Red flashes : Charging batteries

2.1 KEW6310 KEW6310 2.1 Front View

Key Operations


Keys		Details		
Power Key Power on / off the instrument		Power on / off the instrument		
*	LCD ON/OFF Key	Display / hide the indications on the LCD		
▲ ▼	Cursor Key	Select the setting items, switches screens		
ENTER	ENTER Key	Confirm entries		
ESC	ESC Key/ RESET Key	Cancel setting changes, clear integration / demand data selected by Cursor Keys.		
PRINT SCREEN	PRINT SCREEN Key	Save the displayed screen as a BMP (bitmap) file.		
(DATA HOLD)	DATA HOLD Key/ KEY LOCK Key	 Hold the readings. (can view the item and system with Cursor Keys) * Measurement continues even if screen is frozen. Key Lock Pressing 2 sec or more disables all Keys to prevent operational error. Another long press (2 sec or more) is required to restore the disabled Keys. 		
(w)		W : Measure instantaneous values		
Wh		Wh : Measure integration values		
		DEMAND : Measure demand values		
(DEMAND)		: Waveform measurement		
(~)	Menu Key	: Harmonic measurement		
QUALITY)		QUALITY: Select any Ch and set threshold values to record swell/ dip/ int/ transient with time information.		
(SET UP)		SET UP: Basic, Measurement, Save and Other settings		
	Function Key	Execute the displayed function F1, F2, F3, F4 Key (from left to right)		

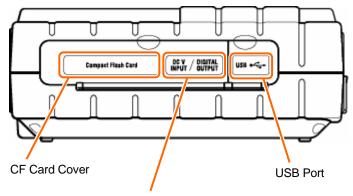
KEW6310 2.2

2.2 Connector KEW6310

2.2Connector

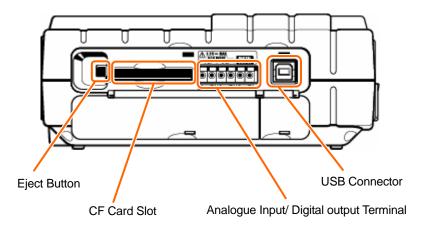
Descriptions

Wiring configuration	Voltage Input Terminal	Current Input Terminal	
Single-phase 2-wire (1ch)	"1P2W×1"	VN, 1	A1
Single-phase 2-wire (2ch)	"1P2Wx2"	VN, 1	A1, 2
Single-phase 2-wire (3ch)	"1P2W×3"	VN, 1	A1, 2, 3
Single-phase 2-wire (4ch)	"1P2W×4"	VN, 1	A1, 2, 3, 4
Single-phase 3-wire (1ch)	"1P3W×1"	VN, 1, 2	A1, 2
Single-phase 3-wire (2ch)	"1P3Wx2"	VN, 1, 2	A1, 2, 3, 4
Single-phase 3-wire (1ch) + 2 Current	"1P3W×1+2A"	VN, 1, 2	A1, 2, 3, 4
Three-phase 3-wire (1ch)	"3P3W×1"	VN, 1, 2	A1, 2
Three-phase 3-wire (2ch)	"3P3Wx2"	VN, 1, 2	A1, 2, 3, 4
Three-phase 3-wire (1ch) + 2 Current	"3P3W×1+2A"	VN, 1, 2	A1, 2, 3, 4
Three-phase 3-wire 3A	"3P3W3A"	V1, 2, 3	A1, 2, 3
Three-phase 4-wire (1ch)	"3P4W×1"	VN, 1, 2, 3	A1, 2, 3
Three-phase 4-wire (1ch) + 1 Current	"3P4W×1+1A"	VN, 1, 2, 3	A1, 2, 3, 4


2.3 KEW6310

KEW6310 2.3 Side Face

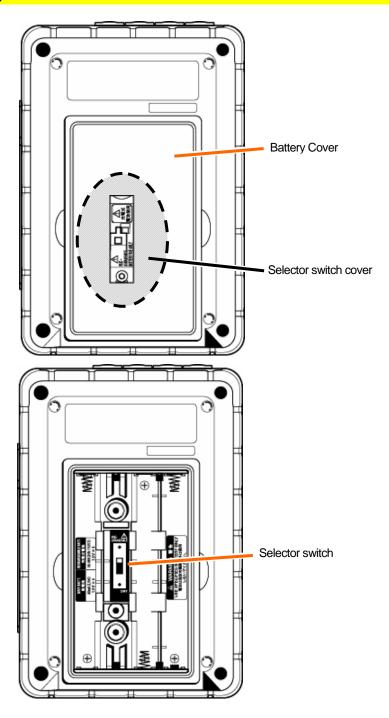
2.3 Side Face


Descriptions

<when the Connector Cover is closed>

Analogue Input/ Digital output

<when the Connector Cover is closed>



CEW6310

2.4 Battery Case KEW6310

2.4 Battery Case

Descriptions

^{*} Set the Selector Switch to either "DRY BATTERY" (alkaline) or "RECHARGEABLE BATTERY" (Ni-MH) position depending on the battery you use.

2.5 KEW6310

2.5 Marks displayed on the LCD

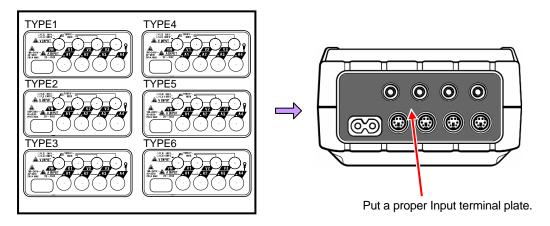
(REG	Flash while saving data			
WAIT	Flash in stand-by mode			
CF	Flash while saving data to a CF Card			
	Flash while saving data to the internal memory			
FULL	Displayed when the capacity of CF Card or the internal memory is full			
₫	Displayed when KEW6310 is operating with AC power supply			
	Displayed when KEW6310 is operating with batteries			
0	Displayed while Data hold function is activated			
W	Displayed when measured voltage exceeds a certain condition			
An	Displayed when measured current exceeds a certain condition			
<u> </u>	Displayed on the screen for Instantaneous value measurement			
	Displayed on the screen for Integration value measurement			
DEMAND	Displayed on the screen for Demand measurement			
\triangleright	Displayed on the WAVE Range screen			
نال	Displayed on the screen for Harmonic analysis			
Quality	Displayed on the screen for Power quality measurement			
B	Displayed on the screen for Capacitance calculation			
SATUP	Displayed on the Setting screen			
KEYLUUK	Displayed while Keys are locked			
F₹	Displayed when swell occurs at Power quality measurement			
₽	Displayed when dip occurs at Power quality measurement			
	Displayed when short-interruption (int) occurs at Power quality measurement			
Σ	Displayed with sum of values measured at each CH			

KEW6310 2.6

Marks for Function Keys			
W	Switch to the screen for Instantaneous value measurement		
Wh	Switch to the screen for Integration value measurement		
DEMAND	Switch to the screen for Demand measurement		
\triangle	Switch to the screen for Waveform measurement		
>	Switch to the Vecory display screen		
⊗.	Change scale of voltage at the screen for Waveform measurement		
® .	Change scale of current at the screen for Waveform measurement		
W/Wh/DEMAND	Wh/DEMAND Switch to W/ Wh/ DEMAND Setting screen		
\triangle	Switch to WAVE Range Setting screen		
	Switch to Harmonic analysis Setting screen		
QUALITY	Switch to Power quality Setting screen		

2.7 KEW6310

KEW6310 2.8

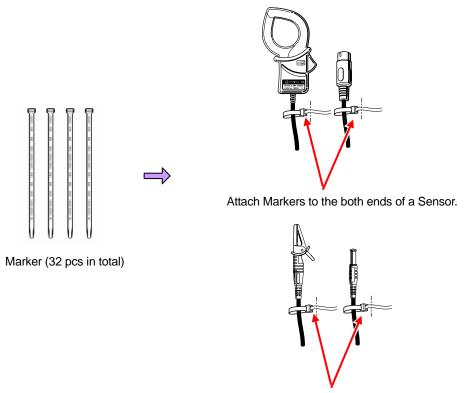

3. Getting started

3.1 Preparation

3.1.1 Putting Input terminal plate on the Input terminal

Six Input terminal plates are supplied with this instrument. Choose one Plate which matches the standard cord colors where the instrument is used. Put the Plate to the Input terminal observing the orientation.

* Clean the Input terminal before putting the Plate and confirm it isn't wet.


Input terminal plate.

	VN	V1/A1	V2/A2	V3/A3	A4
TYPE 1	Blue	Red	Green	Black	Yellow
TYPE 2	Blue	Brown	Black	Gray	Yellow
TYPE 3	Black	Yellow	Green	Red	White
TYPE 4	Blue	Black	Red	White	Yellow
TYPE 5	White	Black	Red	Blue	Yellow
TYPE 6	Black	Red	Yellow	Blue	White

3.1 KEW6310

3.1.2 Attaching Markers to Voltage test leads and Clamp sensors

Attach Markers to the both ends of the Voltage test leads and Clamp sensors harmonized with the Input terminals. * Supplied Markers are 32 pcs in total: 4pcs each color (red, blue, yellow, green, brown, gray, black, white).

Attach Markers to the both ends of the Voltage test lead.

3.2

3.2.1 Battery KEW6310

3.2 Power Supply

3.2.1 Battery

KEW6310 operates with either an AC power supply or batteries. Capable of performing measurements in the event of AC power interruption, power to the instrument is automatically restored by the batteries installed in the instrument. Dry-cell batteries (alkaline) and rechargeable batteries (Ni-MH) can be both used. It is also possible to charge rechargeable batteries in the instrument.

* Dry-cell batteries (alkaline) are supplied as accessories.

DANGER

- Never open the Battery Cover during a measurement.
- Brand and type of the batteries to be used should be harmonized.
- Never touch the Power supply connector although it is insulated while the instrument is operating with batteries.

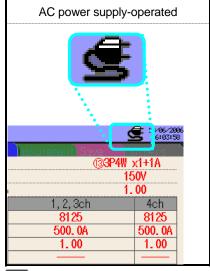
/ WARNING

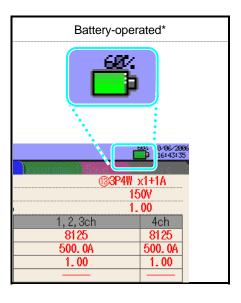
- Remove Power Cord, Voltage test leads and Clamp sensors from the instrument and power off the instrument before replacing the batteries.
- Remove the Selector Switch Cover, and slide the Selector Switch to left or right depending on the batteries to be used. Do not use dry-cell batteries with the Selector Switch set to "RECHARGEABLE BATTERY" position. It may cause electrical shock accident.

Position of Selector Switch	Battery can be used		
RECHARGEABLE BATTERY	size AA Ni-MH rechargeable battery (HR-15/51)		
DRY BATTERY	size AA dry-cell alkaline battery (LR6)		

♠ CAUTION

- Do not mix new and old batteries.
- Install batteries in correct polarity as marked inside.


Batteries are not in the instrument at the time of purchase. Please insert the supplied batteries in the instrument. Battery power is consumed even if the instrument is being off. Remove all the batteries if the instrument is to be stored and will not be in use for a long period. When the instrument is powered by an AC power supply, it doesn't operate with batteries.


If an AC supply is interrupted and the batteries have not been inserted, the instrument goes off and all data may lost.

3.3 KEW6310 <u>KEW6310</u> 3.2.1 Battery

Display

Mark of power supply changes as follows.

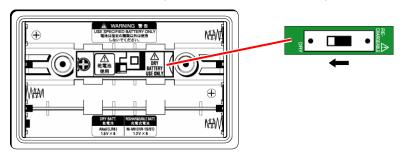
mark flashes while charging batteries.

Battery Condition

Battery mark varies as follows depending on battery condition.

Alkaline dry battery (LR6)	Ni-MH Rechargeable battery (HR-15/51)		
about 2 hours autonomy	about 5 hours autonomy		
Batteries are exhausted. (Accuracy of readings cannot be guaranteed) In this case, the instrument operates as follows automatically.			
Measurement continues, but data saving stops. (Measured data is saved)			
Wh DEMAND Measurement / data saving stops. (Measured data is saved)			
(QUALITY)			

Battery level is displayed by 20% levels.


3. 4

^{*} reference time when using the instrument with indications on the LCD hide

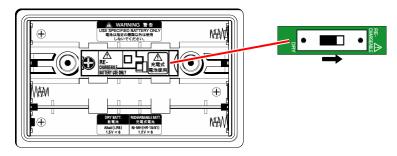
3.2.1 Battery KEW6310

Inserting dry-cell batteries

- 1 Loosen two Battery Cover-fixing screws and remove the Cover.
- 2 Take out all the batteries.
- 3 Loosen the screws and remove the Selector Switch Cover.
 - Attention should be paid so as not to lose the screws.
- Slide to left and set the Selector Switch to "DRY" position.
- 5 Install the Selector Switch Cover with the marking of dry battery faced up, and tighten the screws.

- 6 Insert batteries (LR6 : size AA alkaline batteries) in correct polarity.
- 7 Install the Battery Cover and tighten two screws.
- 8 Connect the AC Power Cord and power on the instrument.

Slide and set the Selector Switch to the proper position prior to installing the Selector Switch Cover. The instrument should be used with the Switch set to a proper position. Never make measurement without installing the Cover.


3.5 KEW6310

KEW6310 3.2.1 Battery

Rechargeable batteries

This instrument can charge rechargeable batteries via AC power supply.

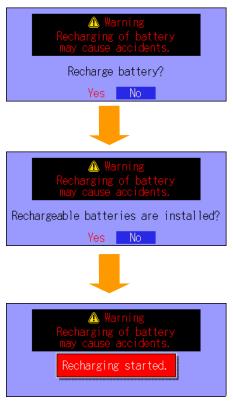
- 1 Loosen two Battery Cover-fixing screws and remove the Cover.
- 2 Take out all the batteries.
- 3 Loosen the screws and remove the Selector Switch Cover.
 - Attention should be paid so as not to lose the screws.
- Slide to left and set the Selector Switch to "RE-CHARGEABLE" position.
- Install the Selector Switch Cover with the marking of rechargeable battery faced up, and tighten the screws.

- 6 Insert batteries (HR-15/51: size AA Ni-MH rechargeable batteries) in correct polarity.
- 7 Install the Battery Cover and tighten two screws.
- 8 Connect the AC Power Cord and power on the instrument.

~ Battery charge ~

Message windows on the next page appear when starting the instrument under following conditions and with battery level of 40% or less.

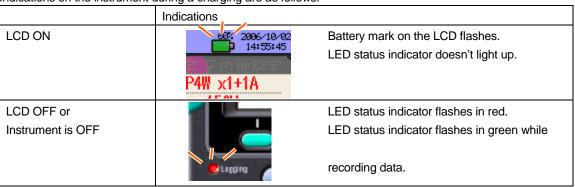
- * Install rechargeable batteries (Ni-MH)
- * Slide and set the Selector Switch to "RE-CHARGEABLE" position.
- * Connect the AC Power cord and power on the instrument.


Refer to "4.2.4 Other Settings" and see the procedure to start battery charge any time.

Follow the message displayed on the LCD and press the Cursor and ENTER Keys to start charging batteries. Selecting "No" returns to the normal screen.

Battery charge doesn't initiate only by installing rechargeable batteries and connecting an AC power cord. Above operation is required to start a battery charge.

KEW6310 3.6


3.2.1 Battery KEW6310

Battery charge starts and the screen returns to normal.

Charging batteries

Indications on the instrument during a charging are as follows.

Slide and set the Selector Switch to the proper position prior to installing the Selector Switch Cover. The instrument should be used with the Switch set to the proper position. Never make measurement without installing the Cover.

3.7 KEW6310

<u>KEW6310</u> 3.2.1 Battery

Charging cycle is 5 min, and charging patterns vary as follows depending on the instrument condition. This is to control temperature rises on the instrument resulting from battery charge.

Pattern	Charging	Pause	Total
			charging time
I. Power ON (LCD_ON)	0.7 min	4.3 min	48h
II. Power ON (LCD_OFF)	2.1 min	2.9 min	14h
III. Power OFF	4.2 min	0.8 min	7h

KEW6310 3.8

3.2.2 AC Power Supply KEW6310

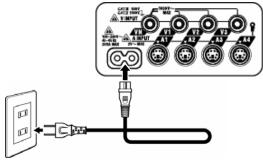
3.2.2 AC Power Supply

Check the followings before connecting the Power cord.

DANGER

- Use only the Power cord supplied with this instrument.
- Connect the Power cord mains plug to a mains socket outlet. The mains supply voltage must not exceed AC240V. (max rated voltage of supplied Power cord MODEL7169 : AC125V)

⚠ WARNING


- Confirm that the instrument is powered off, and then connect the Power cord.
- Connect the Power cord to the instrument first. Cord to be firmly inserted.
- Never attempt to make measurement if any abnormal conditions such as abnormal conditions are noted, such as a broken Cover and exposed metal parts.
- When the instrument is not in use, disconnect the Power cord from the outlet.
- When unplugging the cord from the mains socket outlet, do so by removing the plug first and not by pulling the cord.

Power cord connection

Follow the procedure below, and connect the Power cord.

1 Confirm that the instrument is powered off.

Connect the Power cord to the Power connector on the instrument.

3 Connect the Power cord plug to a mains socket outlet.

Power supply rating

Following table shows the Power supply rating.

Rated supply voltage		100 ~ 240V AC(±10%)
Rated power supply frequency	:	45 ~ 65Hz
Max power consumption	:	20VA max

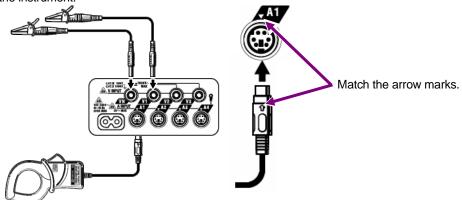
3.9 KEW6310

3.3 Voltage test leads and Clamp sensor connection

Check the followings before connection.

//\ DANGER

- Use only the Voltage test leads supplied with this instrument.
- Use the dedicated Clamp sensor for this instrument, and confirm that the measured current rating of the Clamp sensor is not exceeded.
- Do not connect all the Voltage test leads or Clamp sensors unless required for measuring the parameters desired.
- Connect the test leads and sensors to the instrument first, and only then connect them to the circuit under test.
- Never disconnect the Voltage test leads and sensors while the instrument is in use.


//\ WARNING

- Confirm that the instrument is powered off, and then connect the Power cord.
- Connect the Power cord to the instrument first. Cord to be firmly inserted.
- Never attempt to make measurement if any abnormal conditions such as abnormal conditions are noted, such as a broken Cover and exposed metal parts.

Voltage test leads and Clamp sensor connection

Follow the procedure below, and connect the Voltage test leads and Clamp sensors.

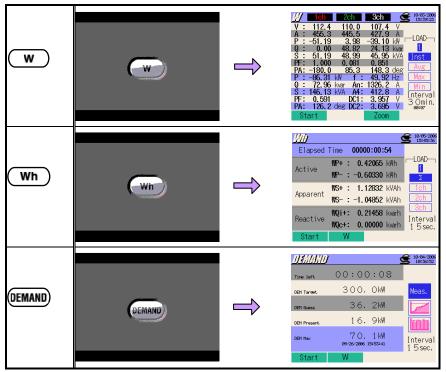
- 1 Confirm that the instrument is powered off.
- 2 Connect the appropriate Voltage test leads to the Voltage input terminal on the instrument.
- 3 Connect the appropriate Clamp sensors to the Current input terminal on the instrument. Match the direction of the arrow mark indicated on the output terminal of the clamp sensor and the mark on the Current input terminal on the instrument.

* Number of Voltage test leads and Clamp sensors to be used depends on the wiring configuration under test. For further details, refer to "5.2 Basic Wiring Configuration" in this manual.

3.10 KFW6310

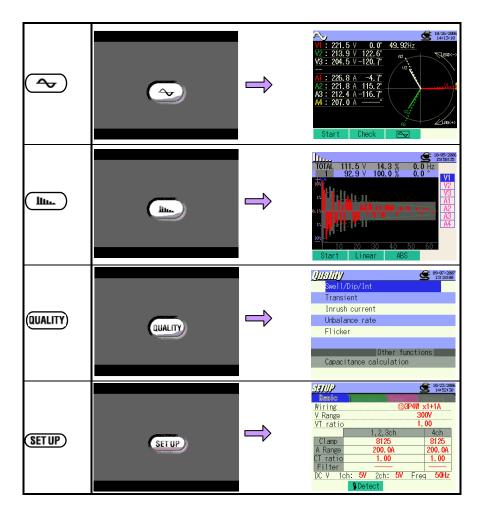
3.4.1 Start-up Screen KEW6310

3.4 Start KEW6310


3.4.1 Start-up Screen

Hold down the POWER Key until the Start-up screen is displayed. Pressing the POWER Key for 2 sec or more powers off the instrument. Following screen is displayed when the instrument is on.

MODEL/VERSION screen is displayed, and a self-check routine starts. Then KEW logo will appear.



Previous screens displayed at last operation are back on.

3.11 KEW6310

KEW6310 3.4.1 Start-up Screen

KEW6310 3.12

3.4.2 Error message KEW6310

3.4.2 Error message

Following screen may appear after a self-check routine.

When a failure is detected;

This instrument automatically checks the internal circuit immediately after it is powered on.

If a suspect failure in the internal circuit is detected, the error screen below will be displayed for about 5 sec.

In this case, refrain from using the instrument and refer to "Section15: Troubleshooting" in this manual.

CAUTION

Notwithstanding the error screen, the measurement screen will appear and the instrument will take measurements anyway. However, accurate readings may not be obtained.

When connected sensors are changed;

Clamp sensors connected are displayed for 5 sec as follows. When no sensor is connected, previous settings are kept.

New sensor is detected.
Recheck the basic setting for SET UP before measurements.

A1 : 8125 (MAX 500A, φ40mm)

A2 : 8146 (MAX 10A, φ24mm)

A3 : 8125 (MAX 500A, φ40mm)

44 : 8128 (MAX 500A, φ24mm)

3.13 KEW6310

KEW6310 3.4.2 Error message

• When CF card needs to be formatted;

Following screen is displayed for 5 sec when a CF Card has to be formatted.

* Only the CF Card formatted via FAT system can be used with this instrument.

Select "Yes" to format the CF Card.

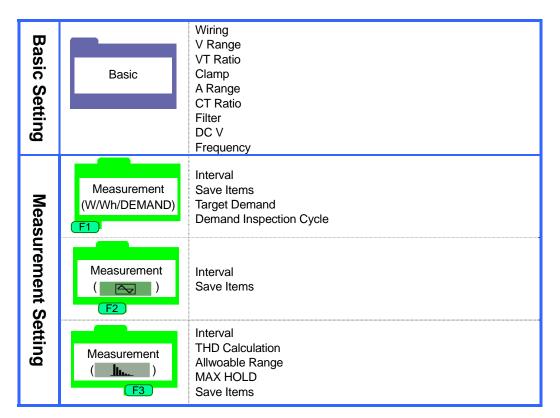
* All the data saved in the CF Card will be cleared.

CF Card cannot be selected as a destination to save data if "No" is selected.

Refer to "12.3 CF Card / Internal memory" in this manual which shows how to format a CF Card.

3.14

4.1 List of Setting items KEW6310


4. Setting SETUP

4.1 List of Setting items

Settings for measurement condition and data saving are necessary prior to making measurements. Press the **SET UP** Key to enter into SET UP mode and do necessary settings.

Setting screens consists of following screens.

4.1 SET UP KEW6310

	Swell / Dip / Int Measureme		Interval* Reference Voltage Transient* Swell Dip Int (short-interruption) Hysteresis Trigger point
	Measurement (QUALITY)	Transient Measurement	Interval* Voltage Range Threshold value Hysteresis Trigger point
F4		Inrush current Measurement	Interval* Clamp Current Range Reference Current Filter Threshold value Hysteresis Trigger point
		Unbalance rate measurement	Interval
		Flicker*	Output threshold value V Range Filter Output item Output Threshold
		Capacitance calculation	Interval Target Power Factor
Sav	Save (1/2)	Recording Method Recodring Start Recording End Destination to Save data Destination to Save screenshot Formatting CF Card Deleting the data in CF Card Formatting Internal Memory Deleting the data in Internal Memory Data transfer (from Internal Memory to CF Card) Loading Setting Save Setting	
Save Setting	Save (2/2)		
Other (1/2) Other (1/2) Other (1/2) Other (1/2) Other (1/2) Auto-Power-Off LCD-Auto-Off			
tting	Other (2/2)	Auto-Power-Off LCD-Auto-Off Battery Charge System Reset	

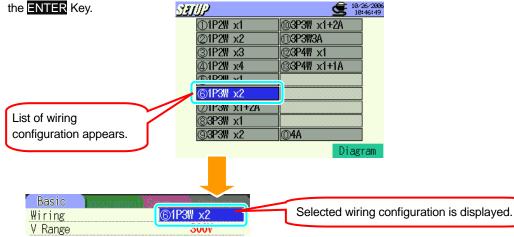
^{*} Flicker measurement function is only available with ver.2.00 or later.

KEW6310 SET UP 4.2

4.2 Settings

4.2.1 Basic Setting

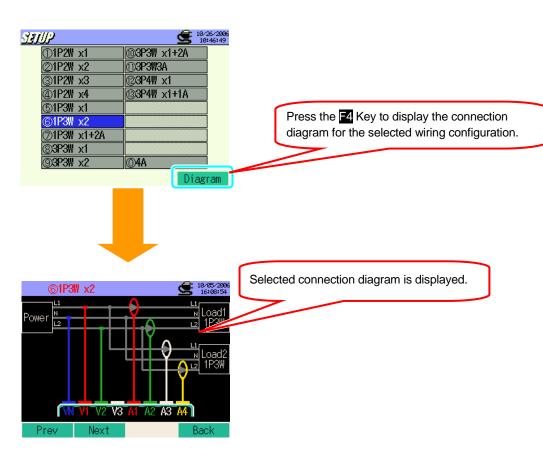
Wiring Configuration


① 1P2W×1	Single-phase 2-wire (1ch)	⑩ 3P3W×1+2A	Three-phase 3-wire (1ch) + 2-current
② 1P2W×2	Single-phase 2-wire (2ch)	① 3P3W3A	Three-phase 3-wire 3A
③ 1P2W×3	Single-phase 2-wire (3ch)	② 3P4W×1	Three-phase 4-wire (1ch)
④ 1P2W×4	Single-phase 2-wire (4ch)	① 3P4W×1+1A	Three-phase 4-wire (1ch) + 1-current
⑤ 1P3W×1	Single-phase 3-wire (1ch)		
6 1P3W×2	Single-phase 3-wire (2ch)		
⑦ 1P3W×1+2A	Single-phase 3-wire (1ch) + 2-current		
8 3P3W×1	Three-phase 3-wire (1ch)		
9 3P3W×2	Three-phase 3-wire (2ch)	① 4A	4-current

^{*} Default value (or after system reset) : ③ 3P4W×1+1A

Press the **TER** Keys and select [Wiring], and then press the **ENTER** Key.

Press the Tursor Keys and select a proper wiring configuration, and then press


4.3 (SET UP) KEW6310

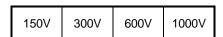
^{*} Wiring of @ 4A can be selected only at W Range. Default value is adopted when selecting the other Ranges.

Check of Connection diagram

Connection diagram can be viewed at selecting a wiring configuration.

Move to a screen for selecting a wiring configuration. Use the **Tursor** Keys to select a wiring configuration, and then press the **4** Key.

F1 Key / ◀ Key : to view preceding connection diagram

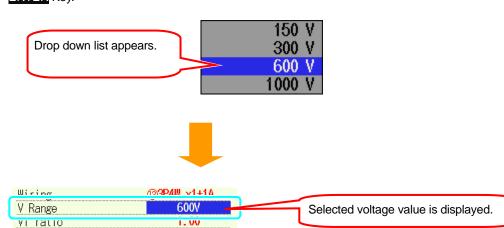

E2 Key / **II►** Key : to view subsequent connection diagram

F4 Key / ESC Key : returns to SET UP screen for selecting wiring configuration

ENTER Key : confirms the selected wiring configuration and returns to Basic Setting Screen

KEW6310 (SET UP) 4.4

Setting for Voltage Range



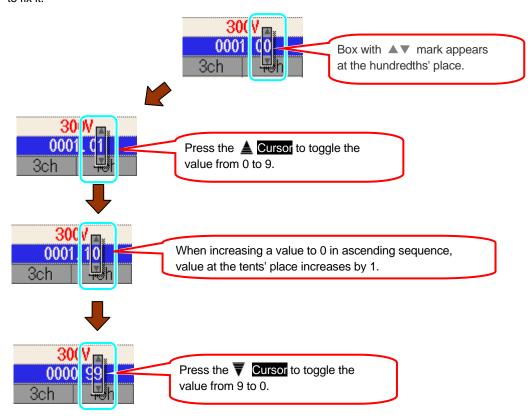
^{*} Default value (or after system reset): 300V

Press the ▲▼ Cursor Keys and select [V Range], and then press the ENTER Key.

Press the **LIVE** Cursor Keys and select a desirable voltage value, and then press the **ENTER** Key.

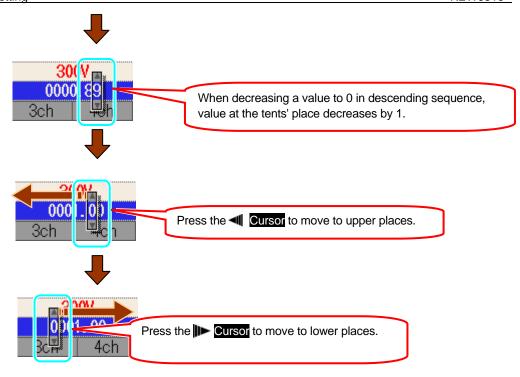
4.5 SETUP

Setting for VT Ratio

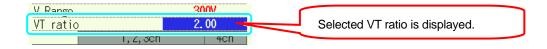

0.01 ~ 9999.99 (can be set by 0.01)

For the details of VT ratio, refer to "5.4 VT / CT Ratio" in this manual.

Press the Tursor Keys and select [VT Ratio], and then press the ENTER Key.



Press the Two Cursor Keys and alter the values, and press the ENTER Key to fix it.



KEW6310 SET UP 4.6

^{*} Default value (or after system reset): 1.00

In case that a preset value is 0000.01, the hundreds' place cannot be altered in descending sequence. Similarly, if a preset value is 9999.99, thousand's place cannot be altered in ascending sequence.

4.7 SETUP

Setting for Clamp sensor

Model names and rated currents of Clamp sensors are listed as follows.

Clamp sensors for Power measurement		Leakage Clamp sensor	
8128	50A type	8141	1A type
8127	100A type	8142	1A type
8126	200A type	8143	1A type
8125	500A type	8146	10A type
8124	1000A type	8147	10A type
8129	3000A type	8148	10A type

^{*} Default value (or after system reset): 8125

Number of available Clamp sensor depends on a wiring configuration to be measured.

clamp sensor depends on a wining configuration to be measured.				
① 1P2W×1	1ch			
② 1P2W×2	1ch	2ch		
③ 1P2W×3	1ch	2ch	3ch	
④ 1P2W×4	1ch	2ch	3ch	4ch
⑤ 1P3Wx1 ⑧ 3P3Wx1	1,20	ch		
6 1P3Wx2 9 3P3Wx2	System 1(1,2ch)		System 2(3,4ch)	
7 1P3W×1+2A 10 3P3W×1+2A	1,2ch		3ch	4ch
① 3P3W3A ② 3P4W×1	1,2,3ch			
③ 3P4W×1+1A	1,2,3ch			4ch
① 4A	1ch	2ch	3ch	4ch

^{*} Default value (or after system reset) : 10 1,2,ch 3,4ch

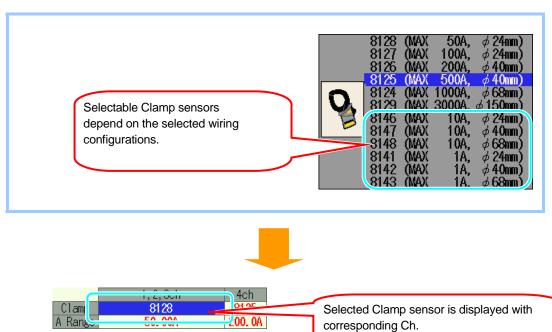
KEW6310 (SET UP) 4.8

^{*} Clamp sensors for measurements other than power are available only at following wiring configurations.

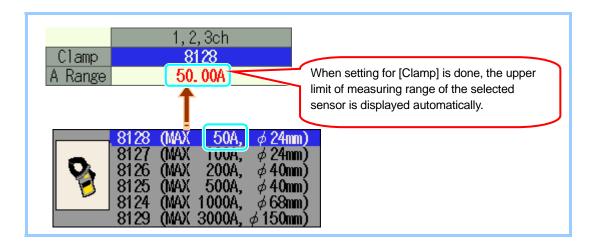
^{*} Channels highlighted in light yellow are applicable only to Clamp sensors for power measurement.

^{*} Channels highlighted in gray are applicable to Clamp sensors for power measurement and Leakage Clamp sensors.

Manual setting and auto setting both are available for Clamp sensors.


<< Manual Setting >>

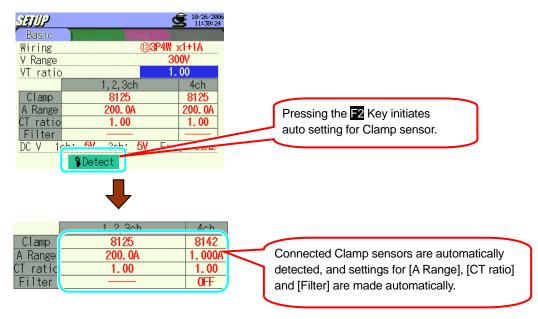
Press the **Trees** Teys and select [Clamp], and then press the **ENTER** Key.



Press the **Cursor** Keys and select a Clamp sensor to be used, and then press the **ENTER** Key.

4.9 (SET UP) KEW6310

Press the Cursor Keys and select Clamp sensors to be used at the other CH, and make settings in the same way.


Settings for [Clamp] and [A Range] are active in subsequent measurements, but they will change when preset wiring configurations are changed. The highest Range is applied to all Chs when the [A Range] at each Ch should be harmonized due to a change of wiring configurations.

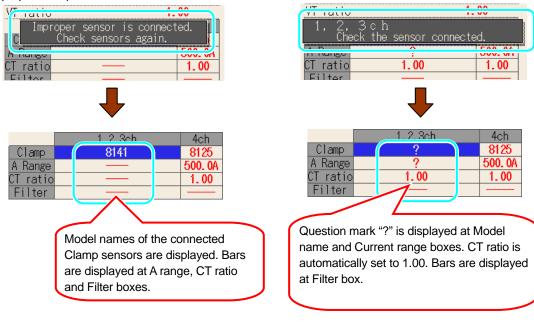
KEW6310 SETUP 4.10

<< Auto Setting >>

Model name of the Clamp sensor connected to the Current Terminal of the instrument is detected automatically at Auto setting mode. Setting for [Wiring] should be done to advance Auto setting.

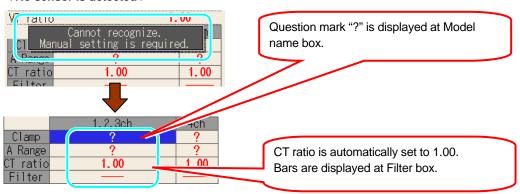
Confirm that settings for [Wiring] are made, and then press the F2 Key.

The max measurable values on Clamp sensor are reflected in setting for [A Range]. [CT ratio] is automatically set to 1.00.


For [Filter], bars are displayed when the detected sensors are MODEL812X series and OFF is displayed when the sensors are MODEL814X series.

Setting will be changed if new sensors are detected at powering on the instrument.

4.11 (SET UP) KEW6310


The instrument detects and checks the connected Clamp sensors and the selected wiring configuration, and displays following messages when improper Clamp sensors are connected.

< Improper Clamp sensor is detected >

Recheck and connect proper Clamp sensors.

< No sensor is detected >

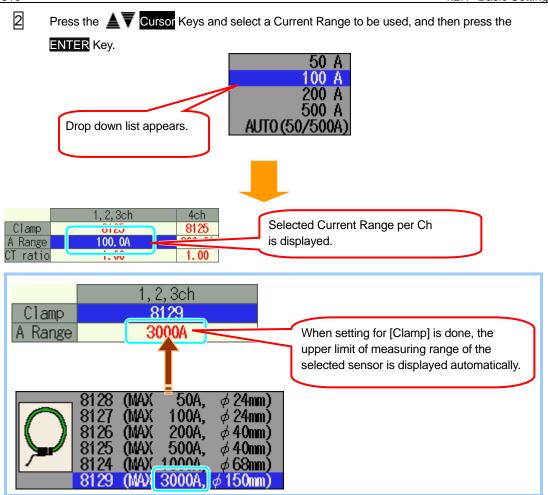
Check the Clamp sensor connected to the Current input terminal corresponding to the Ch number displayed with question mark.

When starting measurement with the question mark displayed at the [Clamp] box, previous setting is applied automatically.

KEW6310 SET UP 4.12

Setting for Current Range

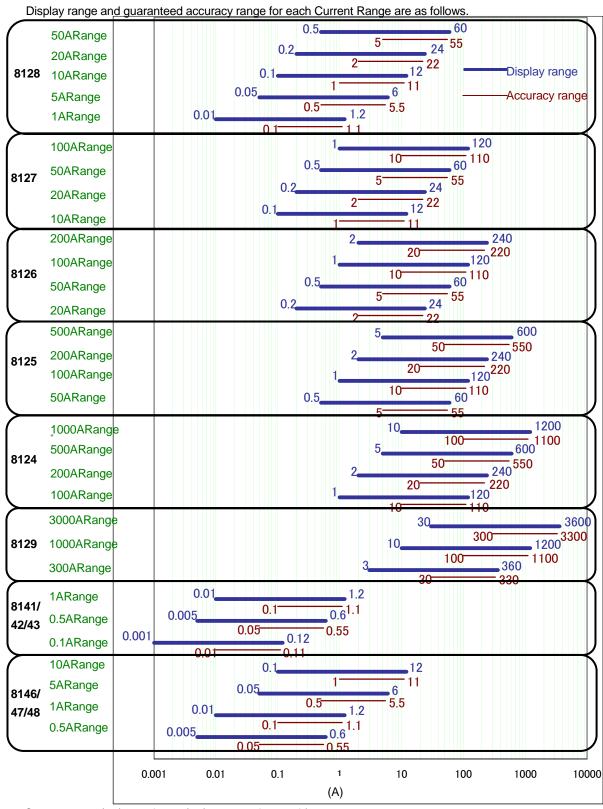
Available Current Range varies depending on the Clamp sensor to be used.


	9 1
8128	1/5/10/20/50A/AUTO
8127	10/20/50/100A/AUTO
8126	20/50/100/200A/AUTO
8125	50/100/200/500A/AUTO
8124	100/200/500/1000A/AUTO
8129	300/1000/3000A
8141	
8142	100mA/500mA/1A/AUTO
8143	
8146	
8147	500mA/1/5/10A/AUTO
8148	

^{*} Default value (or after system reset) : 200A(8125)

1 Press the Law Cursor Keys and select [A Range], and then press the ENTER Key.

4.13 **SET UP** KEW6310



Press the Cursor Keys and select Clamp sensors to be used at the other Ch, and make settings in the same way.

Settings of [Clamp] and [A Range] are active in following measurements, but they will change when preset wiring configurations are changed. The highest Range is applied to all Chs when the [A Range] at each Ch should be harmonized due to a change of wiring configurations.

KEW6310 SETUP 4.14

Sensors: 8141/42/43 and 8146/47/48 cannot be used for power measurements.

4.15 **SET UP** KEW6310

Setting for CT ratio

0.01 ~ 9999.99 (can be set by 0.01)

* Default value (or after system reset): 1.00

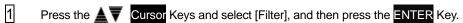
For the details of CT ratio, refer to "5.4 VT / CT Ratio" in this manual.

1 Press the AV Cursor Keys and select [CT Ratio], and then press the ENTER Key.

- Setting procedure is same to that for VT ratio. Refer to the procedure described in the preceding pages.
- Press the Cursor Keys and select CT ratio for the other Chs, and make settings in the same way.

KEW6310 SETUP 4.16

Setting for Filter

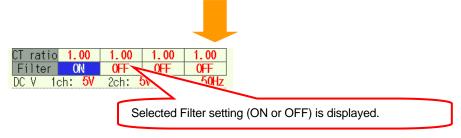

Lowpass filter activate to cut frequencies in higher harmonic band when set the Filter function "ON".

(Cutoff frequency: approx 160Hz)

Filter	Available (ON⇔OFF)		Not available ()
Wiring	⑦1P3W x 1+2A ⑩3P3W x 1+2A ⑪3P4W x 1+1A ⓪ 4A	3,4ch 3,4ch 4ch	
Clamp Sensor	8141/42/43/46/47/48		8128/27/26/25/24/29

^{*} Default value (or after system reset): ---- or OFF

^{*} Bar "-----" is displayed for the Filter other than listed above, and a setting cannot be made.



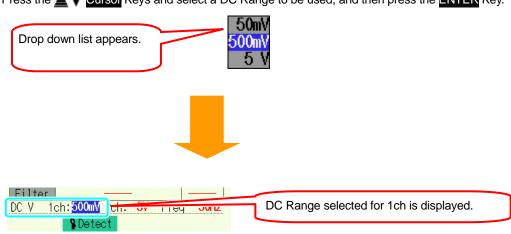
Press the Tursor Keys and select "ON" or "OFF", and then press the ENTER Key.

Press the Cursor Keys and select ON / OFF for the other Chs, and make settings in the same way.

4.17 (SET UP) KEW6310

Setting for DC V

Setting for Voltage Range at analogue input terminal can be made according to the procedure below.


50mV	500mV	5V

^{*} Default value (or after system reset): 5V

Press the Tursor Keys and select [DC V], and then press the ENTER Key.

Press the Tursor Keys and select a DC Range to be used, and then press the ENTER Key.

Press the Cursor Keys and select DC Range for 2ch, and make settings in the same way.

KEW6310 SET UP 4.18

Setting for Frequency

Frequency of the fixed clock can be changed according to following procedure when PLL synchronized measurement cannot be made.

^{*} Default value (or after system reset): 50Hz

Press the Tursor Keys and select [Freq], and then press the ENTER Key.

Press the Law Cursor Keys and select "50Hz" or "60Hz", and then press the ENTER Key.

4.19 (SET UP) KEW6310

KEW6310 SETUP 4.20

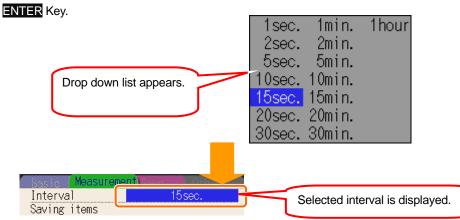
4.2.2 Measurement setting

W/ Wh/ DEMAND

Press the Key at Measurement setting screen to move to the setting screen for W/ Wh/ DEMAND Range.

Setting for interval

Interval is a space of the time between data savings; data is saved in a CF card or Internal memory.

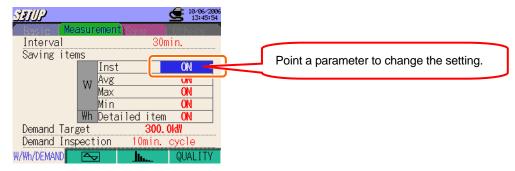

	<u> </u>	
1 sec	1 min	
2 sec	2 min	
5 sec	5 min	
10 sec	10 min	1 hour
15 sec	15 min	
20 sec	20 min	
30 sec	30 min	

^{*} Default value (or after system reset): 30 min

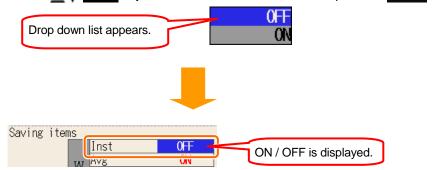
Press the Cursor Keys and select [Interval], and then press the ENTER Key.

Press the Two Cursor Keys and select any desirable interval, and then press the

4.21 (SET UP) KEW6310


Setting for inst / avg / max / min values

Select "ON" for the parameters to be saved.


ON⇔OFF

* Default value (or after system reset) : ON

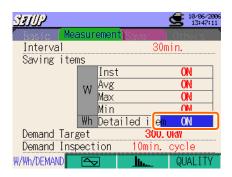
Press the Lurson Keys and select any of [Inst / Avg / Max / Min], and then press the ENTER Key.

Press the Tourson Keys and select "ON" or "OFF", and then press the ENTER Key.

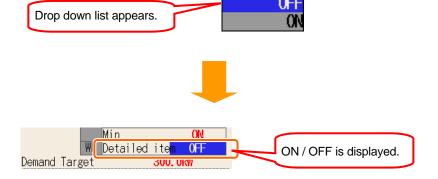
When an interval is set to 1 sec, Inst value= Avg value= Max value = Min value. In this case, only Inst values are recorded. ("ON" is available only for Inst) Incapable of applying "OFF" to all the items.

Press the Tursor Keys and make settings for [Avg / Max / Min] as well.

KEW6310 SET UP 4.22


Setting for detailed items

Parameters saved under ON or OFF setting for Detailed item are listed below.


	ON	OFF
WP+/WP-	0	0
WS+/WS-	0	Х
WQi+/WQc+	0	0
WQi- / WQc-	0	Х
Each CH	0	Х

ON⇔OFF

Press the Toursor Keys and select [Detailed item], and then press the ENTER Key.

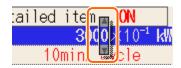
Press the Tursor Keys and select "ON" or "OFF", and then press the ENTER Key.

4.23 SET UP KEW6310

^{*} Default value (or after system reset) : ON

Setting for Target demand

For the details of target demand, refer to "Section8 Demand measurement" in this manual.


1.000 ~ 999.9(can be set by 0.1) mW/W/kW/MW/GW/TW

^{*} Default value (or after system reset): 300.0kW

Press the **Transition** Transition Press the **Transition** Transition Press the **Transition** Press the **Transition** Transition Press the **Transition** Press the **Transition** Transition Press the **Transition** P

Press the ▲▼◀ I► Cursor Keys and alter the values.

SET UP 4.24

3 Use the ▲▼◀ I Cursor Keys and set multipliers.

Multiplier Setting

As a target demand, values within a range between 1000 and 9999 can be used.

To select a value 1000 or less, minus multiplier should be used.

$$100.0 = 1000 \times 10^{-1}$$

$$10.00 = 1000 \times 10^{-2}$$

$$1.000 = 1000 \times 10^{-3}$$

Press the Tursor Keys and a select proper unit, and then press the ENTER Key.

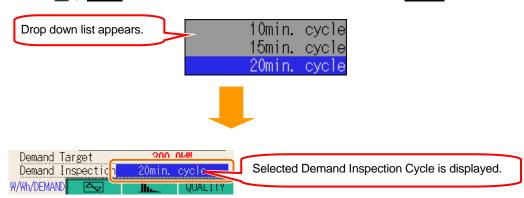
Selected target demand is displayed.

4.25 (SET UP)

Setting for Demand inspection cycle

For the details of Demand inspection cycle, refer to "Section 8 Demand measurement" in this manual.

Demand Interval	Demand Inspection Cycle
1 sec	
2 sec	invalid
5 sec	
10 sec	1sec/2sec/5sec
15 sec	2sec/5sec/10sec
20 sec	5sec/10sec/15sec
30 sec	10sec/15sec/20sec
1 min	15sec/20sec/30sec
2 min	20sec/30sec/1min
5 min	30sec/1min/2min
10 min	1min/2min/5min
15 min	2min/5min/10min
20 min	5min/10min/15min
30 min	10min/15min/20min
1 hour	15min/20min/30min


^{*} Default value (or after system reset) : 10 min

KEW6310 SET UP 4.26

Press the Tursor Keys and select [Demand Inspection], and then press the ENTER Key.

Press the ▲▼ Cursor Keys and select a desirable cycle, and then press the ENTER Key.

Demand Inspection Cycle listed on the drop down list depends on the selected interval. Change the interval setting first when a desirable cycle isn't listed on the drop down list.

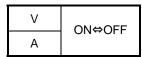
4.27 (SET UP) KEW6310

KEW6310 SETUP 4.28

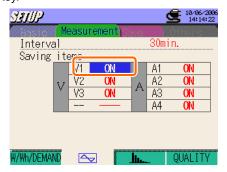
WAVE Range Setting

Press the 2 Key at each Measurement setting screen, and move to the screen for WAVE Range Setting.

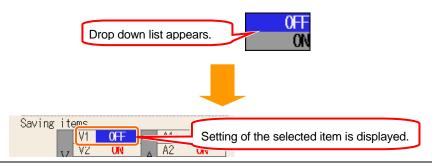
Setting for interval


- * Default value (or after system reset): 30 min
- * Setting procedure is same to that for interval Setting for W/ Wh/ DEMAND.Refer to the procedure described in the preceding pages.

Interval listed on the drop down list depends on the number of save items with "ON" setting. Alter the number of save items with "ON" setting when desirable interval isn't listed on the drop down list.


Interval	Number of "ON"
1 sec	1
2 sec	2 or less
5 sec or more	5 or less

Setting for saving Waveform data


Parameters with "ON" setting will be saved.

* Default value (or after system reset) : ON (all items)

Press the Cursor Keys and select "ON" or "OFF", and then press the ENTER Key.

4.29 (SET UP) KEW6310

Harmonic Analysis

Press the 3 Key at each Measurement setting screen, and move to the screen for Harmonic Analysis Setting.

Setting for interval

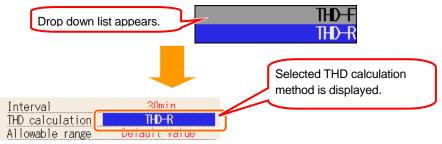
- * Default value (or after system reset): 30 min
- * Setting procedure is same to that for interval Setting for W/ Wh/ DEMAND.Refer to the procedure described in the preceding pages.

Interval listed on the drop down list depends on the number of save items with "ON" setting. Alter the number of save items with "ON" setting when desirable interval isn't listed on the drop down list. Interval of 1 sec is not available.

Interval	Number of "ON"				
2 sec	1				
5 sec	2				
10 sec	5				

THD Calculation Setting

THD stands for "Total Harmonic Distortion".


* Default value (or after system reset) : THD-F

THD-F	Fundamental waveform-basis
THD-R	Total RMS value-basis

Press the Tursor Keys and select [THD Calculation], and then press the ENTER Key.

Press the Cursor Keys and select "THD-F" or "THD-R", and then press the ENTER Key.

KEW6310 SETUP 4.30

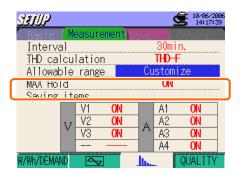
Setting for allowable range

For the details of allowable range of Harmonic Analysis, refer to "**Section10 Harmonic analysis**" in this manual.

Default value	Customize				
(can be set by 0.1)	(can be set by 0.1)				

^{*} Default value (or after system reset) : Default value

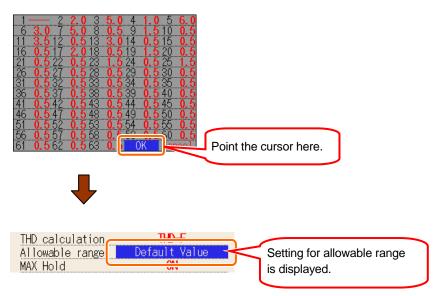
Either default values listed in the below table or customized values can be used.


Default values										
1		2	2.0	3	5.0	4	1.0	5	6.0	
6	3.0	7	5.0	8	0.5	9	1.5	10	0.5	
11	3.5	12	0.5	13	3.0	14	0.5	15	0.5	
16	0.5	17	2.0	18	0.5	19	1.5	20	0.5	
21	0.5	22	0.5	23	1.5	24	0.5	25	1.5	
26	0.5	27	0.5	28	0.5	29	0.5	30	0.5	
31	0.5	32	0.5	33	0.5	34	0.5	35	0.5	
36	0.5	37	0.5	38	0.5	39	0.5	40	0.5	
41	0.5	42	0.5	43	0.5	44	0.5	45	0.5	
46	0.5	47	0.5	48	0.5	49	0.5	50	0.5	
51	0.5	52	0.5	53	0.5	54	0.5	55	0.5	
56	0.5	57	0.5	58	0.5	59	0.5	60	0.5	
61	0.5	62	0.5	63	0.5					

^{*} These values are applied as default values or after system reset.

4.31 **SET UP** KEW6310

< Adopting default values >

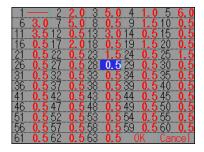

Press the **Transport** Cursor Keys and select [Allowable range], and then press the **ENTER** Key.

Press the ▲▼ Cursor Keys and select [Default Value], and then press the ENTER Key.



Selectable default value is displayed. Press the Cursor Keys and point [OK] to accept the value and press the ENTER Key. Point [Cancel] with Cursor Keys, and press the ENTER Key to select the values other than the ones listed below. (or press the ESC Key) Then screen returns to 1. Select [Customize] and set a desirable value. See "Adopting customized values" which indicates how to customize the values.

< Adopting customized values >


Press the Lursor Keys and select [Allowable range], and then press the ENTER Key.

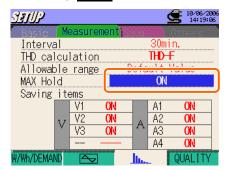
Press the Tursor Keys and select [Customize], and then press the ENTER Key.

Press the Tursor Keys and select the order to be changed, and then press the ENTER Key.

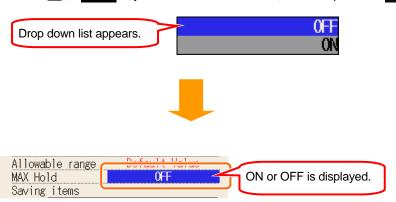
According to the procedure to change VT ratio described at preceding page and alter the values.

4.33 (SET UP) KEW6310

Press the **To** cancel the alternations of values, move the cursor to [OK], and press the **ENTER** Key. Then Screen returns to 1.


Setting for MAX HOLD

For the details of Max Hold in Harmonic Analysis, refer to "Section10 Harmonic analysis" in this manual.



* Default value (or after system reset) : ON

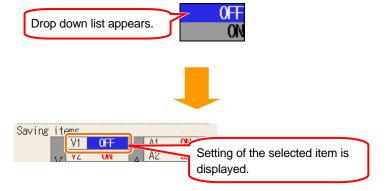
Press the Tursor Keys and select [MAX Hold], and then press the ENTER Key.

Press the Tursor Keys and select "ON" or "OFF", and then press the ENTER Key.

4.35 **SET UP** KEW6310

Setting for saving items

Parameters with "ON" setting will be saved.



* Default value (or after system reset) : ON (all items)

Press the **ENTER** Key. Cursor Keys and select a parameter to be changed, and then press the **ENTER** Key.

Press the Tursor Keys and select "ON" or "OFF", and then press the ENTER Key.

Measured data won't be saved at the channel with "OFF" setting, nor displayed during measurement.

QUALITY

Press the F4 Key at Measurement setting screens to move to the QUALITY setting screen.

Access to "QUALITY" from Measurement Setting Tab, and press the Tursor Keys and select: Swell / Dip / Int, Transient, Inrush current, Unbalance rate, Capacitance calculation and Flicker measurement*.

Setting for Swell / Dip / Int Measurement

For the details of Swell / Dip / Int measurement, refer to "11.2 Swell / Dip / Int measurement" in this manual.

Setting Items		
Interval ^{*2}	: set interval time	
Reference Voltage*1	: set a standard voltage (70 ~ 1000V)	
Transient*2	: set Vpeak against Voltage Range(50~2000Vpeak)	
Swell *1	: set a threshold value greater than the reference voltage (100 ~ 200%)	
Dip *1	: set a threshold value smaller than the reference voltage (5 ~ 100%)	
Int *1	: set a threshold value smaller than the reference voltage (5 ~ 98%)	
Hysteresis	: set a hysteresis for Swell / Dip / int (1 ~ 10%)	
Trigger Point	: set the number of data save point prior to / following an event of trigger	

^{*} Voltage value is automatically calculated when setting percentages for Swell / Dip / Int / Hysteresis.

- (Int + Hysteresis) < (Dip)
- (Dip + Hysteresis) < (Swell)

4.37 **SET UP** KEW6310

^{*} Flicker measurement function is only available with ver.2.00 or later.

^{*1} Each values should be;

^{*2} Flicker measurement function is only available with ver.2.00 or later.

Setting for interval

Interval is a space of the time between data savings; data is saved in a CF card or Internal memory.

- * Default value (or after system reset): 30 min
- * Setting procedure is same to that for interval Setting for W/ Wh/ DEMAND.Refer to the procedure described in the preceding pages.

Setting for reference voltage

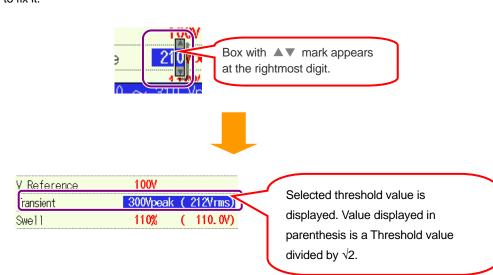
70 ~ 1000V (can be set by 1V)

* Default value (or after system reset): 100V

Press the Tourson Keys and select [V_Reference], and then press the ENTER Key.

Press the Two Cursor Keys and alter values, and then press the ENTER Key.

Setting for Transient


Voltage Range	70~150V	151~300V	301~600V	601~1000V
Transient (on 1V basis)	50~310Vpeak	90~630Vpeak	170~1270Vpeak	340~2000Vpeak

^{*} Default value (or after system reset): 210V

Press the Tursor Keys and select [Transient], and then press the ENTER Key.

Press the Two Cursor Keys and alter the values, and press the ENTER Key to fix it.

4.39 (SET UP) KEW6310

^{*} Vrms value (Vpeak divided by $\sqrt{2}$) is automatically calculated when Vpeak is set.


Setting for swell

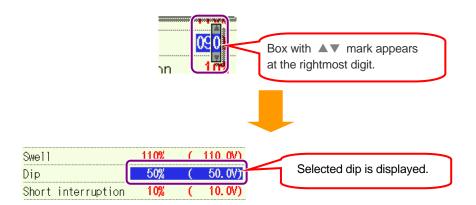
100 ~ 200% (can be set by 1%)

Press the ▲▼ Cursor Keys and select [Swell], and then press the ENTER Key.

Press the Two Cursor Keys and alter values, and then press the ENTER Key.

^{*} Default value (or after system reset) : 110%

Setting for dip


5~ 100% (can be set by 1%)

* Default value (or after system reset): 90%

Press the **ENTER** Keys and select [Dip], and then press the **ENTER** Key.

Press the Two Cursor Keys and alter values, and then press the ENTER Key.

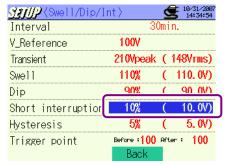
Lower limit varies depending on the selected reference voltage.

• 70 ~ 150V : percentage to obtain values of 7.5 or more

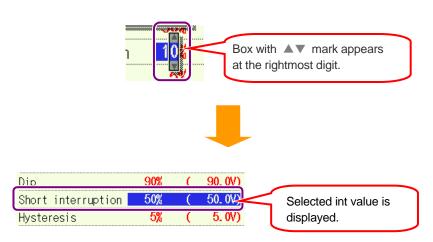
• 151 ~ 300V : percentage to obtain values of 15.0 or more

• 301 ~ 600V : percentage to obtain values of 30.0 or more

• 601 ~ 1000V : percentage to obtain values of 50.0 or more


4.41 (SET UP) KEW6310

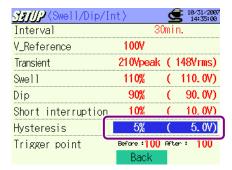
Setting for int (short interruption)


5 ~ 98% (can be set by 1%)

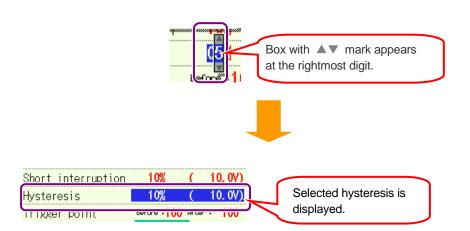
* Default value (or after system reset): 10%

Press the Lursor Keys and select [Short interruption], and then press the ENTER Key.

Press the Two Cursor Keys and alter values, and then press the ENTER Key.


Lower limit varies depending on the selected reference voltage. Alter the reference voltages to change the lower limit.

Setting for hysteresis


1 ~ 10% (can be set by 1%)

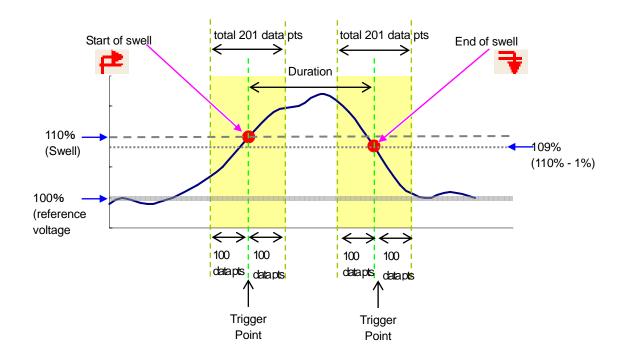
* Default value (or after system reset): 5%

Press the **Text** Cursor Keys and select [Hysteresis], and then press the **ENTER** Key.

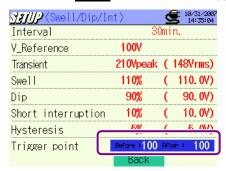
Press the Two Cursor Keys and alter values, and then press the ENTER Key.

4.43 **SET UP** KEW6310

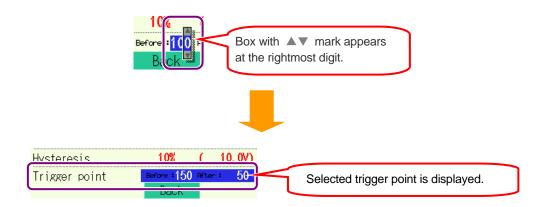
Setting for trigger point


Trigger to start and stop recording, when a preset threshold is exceeded, is decided based on the number of recorded data.

Past: 0 ~ 200 (can be set by 1) Next : 200 ~ 0 (can be set by 1)	Past: 0 ~ 200 (can be set by 1)	Next : 200 ~ 0 (can be set by 1)
--	---------------------------------	----------------------------------


^{*} Default value (or after system reset): 100

Example of Trigger Pint Setting:

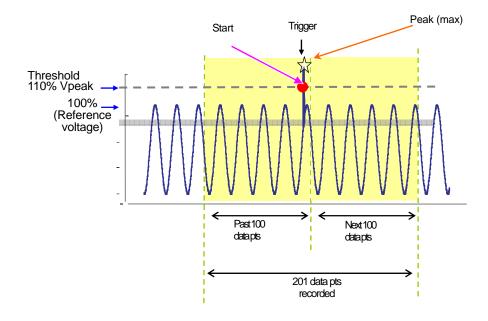

Setting item	e.g.
Reference voltage	100V
Swell	110%
Hysteresis	1%
Trigger point	Past: 100, Next: 100

Press the **Tursor** Keys and select [Trigger point], and then press the **ENTER** Key.

Press the Two Cursor Keys and alter values, and then press the ENTER Key.

When setting a trigger point for "Past", the point for "Next" is automatically decided. (total 200 data pts)

4.45 (SET UP) KEW6310


Setting for transient measurement

For the details of Transient Measurement, refer to "11.3 Transient measurement" in this manual.

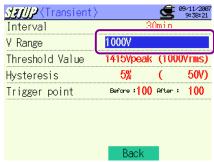
Setting Items		
Interval ^{*1}		set interval time
V Range	:	select a base Voltage Range(150~1000V)
Threshold value	:	set Vpeak against Voltage Range(50~2000Vpeak)
Hysteresis	:	set a hystereis in percentage against Voltage Range(1~10%)
Trigger point	:	set a number of data save point prior to / following an event of trigger

^{*} Selectable range for threshold (Vpeak) is automatically displayed when selecting Voltage Range (V).

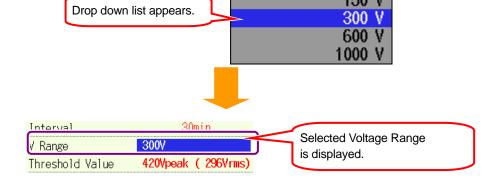
^{*1} Flicker measurement function is only available with ver.2.00 or later.

4.47 SET UP KEW6310

Setting for interval


- * Default value (or after system reset): 30 min
- * Setting procedure is same to that for interval Setting for W/ Wh/ DEMAND.Refer to the procedure described in the preceding pages.

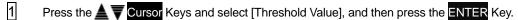
Setting for voltage range


150/300/600/1000V

* Default value (or after system reset): 1000V

Press the **Trees** Terms Terms

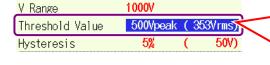
Press the Lursor Keys and select a Voltage Range and then press the ENTER Key.



Setting for threshold

Voltage Range	150V	300V	600V	1000V
Threshold (on 1V basis)	50~310Vpeak	90~630Vpeak	170~1270Vpeak	340~2000Vpeak

^{*} Default value (or after system reset): 1415V


^{*} Vrms value (Vpeak divided by $\sqrt{2}$) is automatically calculated when Vpeak is set.

Press the Two Cursor Keys and alter the values, and press the ENTER Key to fix it.

Selected threshold value is displayed. Value displayed in parenthesis is a threshold value divided by $\sqrt{2}$.

4.49 (**SET UP**) KEW6310

Setting for hysteresis

1 ~ 10% (can be set by 1%)

- * Default value (or after system reset): 5%
- * Setting procedure is same to that for Hysteresis Setting for Swell, Dip, Int measurement. Refer to the procedure described in the preceding pages.

Setting for trigger point

Past: 1 ~ 200 (can be set by 1)	Next : 200 ~ 0 (can be set by 1)
---------------------------------	----------------------------------

- * Default value (or after system reset): 100
- * Trigger to start and stop recording when a preset threshold exceeded will be decided based on the number of recorded data.
- * Setting procedure is same to that for Trigger Point Setting for Swell, Dip, Int measurement. Refer to the procedure described in the preceding pages.

Setting for Inrush Current Measurement

For the details of Inrush Current, refer to "11.4 Inrush Current Measurement" in this manual.

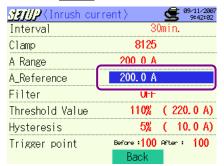
Setting Items		
Interval ^{*1}		set interval time
Clamp sensor	:	refer to Basic setting
A Range	:	refer to Basic setting
Reference current	:	select a Current Range of reference
Filter	:	refer to Basic setting
Threshold value	:	set in percentage against reference current
Hysteresis	:	set in percentage against reference current
Trigger Point	:	set a number of data save point prior to / following an event of trigger

^{*} Selectable range for reference current (A/mA) is automatically displayed after selecting a Current Range for 1ch at Basic setting.*1 Flicker measurement function is only available with ver.2.00 or later.

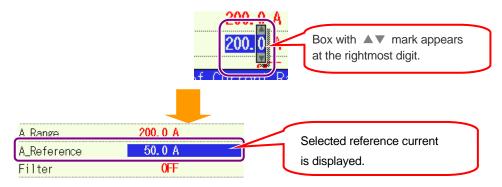
Setting for interval

- * Default value (or after system reset): 30 min
- * Setting procedure is same to that for interval Setting for W/ Wh/ DEMAND.Refer to the procedure described in the preceding pages.

Setting for referent current


Current Range	Selectable range	Resolution
100mA	10 ~ 100mA	0.1mA
500mA	50 ~ 500mA	0.1mA
1A	0.1 ~ 1A	0.001A
5A	0.5 ~ 5A	0.001A
10A	1 ~ 10A	0.01A
20A	2 ~ 20A	0.01A
50A	5 ~ 50A	0.01A
100A	10 ~ 100A	0.1A
200A	20 ~ 200A	0.1A
500A	50 ~ 500A	0.1A
1000A	100 ~ 1000A	1A
3000A	300 ~ 3000A	1A

^{*} When "AUTO" is selected as a Current Range for A1, the max Range of Clamp sensor is set automatically.


4.51 **SET UP** KEW6310

^{*} Selectable range is within 10 to 100% of Current Range.

1 Press the Cursor Keys and select [A_Referene], and then press the ENTER Key.

Press the Two Cursor Keys and alter the values, and press the ENTER Key to fix it.

Setting for Threshold

100 ~ 200% (can be set by 1%)

- * Default value (or after system reset): 110%
- * Setting procedure is same to that for Threshold Setting for Swell, Dip, int measurement. Refer to the procedure described in the preceding pages.

Setting for hysteresis

1 ~ 10% (can be set by 1%)

- * Default value (or after system reset): 5%
- * Setting procedure is same to that for Hysteresis Setting for Swell, Dip, Int measurement. Refer to the procedure described in the preceding pages.

Setting for trigger point

Past: 0 ~ 200 (can be set by 1) Next : 200 ~ 0 (can be set by 1)

- * Default value (or after system reset): 100
- * Trigger to start and stop recording, when a preset threshold exceeded, will be decided based on the number of recorded data.
- * Setting procedure is same to that for Trigger Point Setting for Swell, Dip, Int measurement. Refer to the procedure described in the preceding pages.

Setting for unbalance rate measurement

For the details of Voltage Unbalance Rate Measurement, refer to "11.5 Unbalance Rate" in this manual.

	Setting Items
Interval	: set interval time
Output threshold	: set threshold for the output of voltage unbalance rate

Setting for interval

- * Default value (or after system reset): 30 min
- * Setting procedure is same to that for interval Setting for W/ Wh/ DEMAND.Refer to the procedure described in the preceding pages.

Setting for output threshold

1 ~ 20% (can be set by 0.1%)

* Default value (or after system reset): 3%

Press the **AV** Cursor Keys and select [Output Threshold], and then press the **ENTER** Key.

Press the ▲▼◀ I► Cursor Keys and alter values, and then press the ENTER Key.

4.53 **SET UP** KEW6310

Setting for Flicker measurement

For the details of Flicker measurement, refer to "11.6 Flicker measurement" in this manual.

Setting Items		
V Range	: select a desirable Voltage Range (150~600V)	
Filter	: select a visibility filter for flicker calculation	
Output item	: set conditions for output to Output terminal	
Output Threshold	: select a threshold value for Output terminal	

Setting for voltage range

150/300/600V

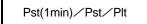
Setting for Filter

Follow the procedure below and select any filter factor.

230V/120V/100V

* Default value (or after system reset): 230V

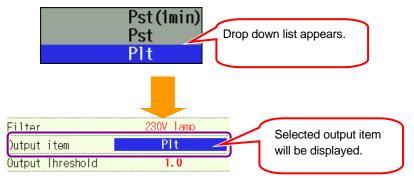
¶ Select any desirabe [Filter] with ▲▼ Cursor Key and press the ENTER Key.


^{*} Default value (or after system reset): 300V

^{*} Setting procedure is same to that for Voltage Range described in the clause of "Setting for Transient measurement". Refer to the procedure described in the preceding pages.

Setting for Output item

Follow the procedure below to make setting for output items. (conditions for output to Output terminal)


- * Default value (or after system reset) : Pst(1miin)
- * where:

Output item = Pst, Output threshold = 1.0, threshold check is done when Pst is refreshed (every 10 min)

1 Select any desirable [Output item] with
To Cursor Key and press the ENTER Key.

Select a desirable filter factor with ▲▼ ■ Cusor Key and press the ENTER Key.

4.55 (SET UP) KEW6310

Setting for output threshold

0.8~20.0(can be set by 0.1)

^{*} Default value (or after system reset) :1.0

^{*} Setting procedure is same to that for Output Threshold described in the clause of "Setting for Unbalance rate". Refer to the procedure described in the preceding pages.

Setting for capacitance calculation

For the details of unbalance rate Measurement, refer to "11.7 Capacitance Calculation" in this manual.

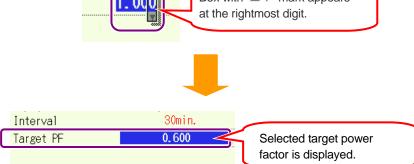
	Setting items
Interval	: select interval
Target power factor	: simulating power factor correction with capacitor banks

Setting for interval

- * Default value (or after system reset): 30 min
- * Setting procedure is same to that for interval Setting for W/ Wh/ DEMAND.Refer to the procedure described in the preceding pages.

Setting for target power factor

0.5 ~ 1 (can be set by 0.001)


* Default value (or after system reset): 1.000

Press the **Trees** Terror Keys and select [Target PF], and then press the **ENTER** Key.

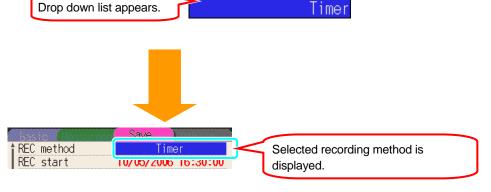
Press the Cursor Keys and alter values, and then press the ENTER Key.

Box with M mark appears

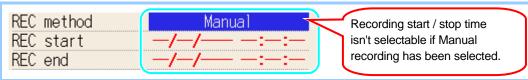
4.57 (SET UP) KEW6310

4.2.3 Save Setting KEW6310

4.2.3 Save Setting


Setting for recording

Manual⇔ Timer


1 Press the Cursor Keys and select [REC method], and then press the ENTER Key.

Press the Lursor Keys and select Manual or Timer, and then press the ENTER Key.

Manual

4.59 **SET UP** KEW6310

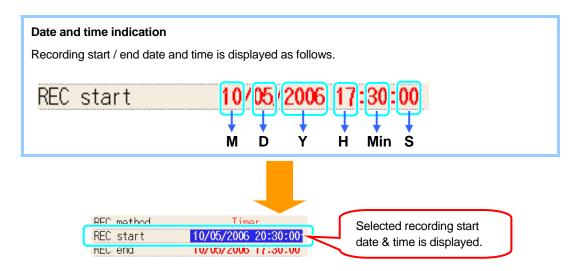
^{*} Default value (or after system reset): Timer

KEW6310 4.2.3 Save Setting


Setting for recording start

Recording starts when a preset date and time comes.

Recording method	MANUAL	TIMER
Display	//:	Year//Month/Date Hour:Minute:Second
Display at setting (at step 1 below)	Invalid	Minute indication is rounded to the nearest 30 min ahead. When present time is 28 ~ 30 min or 58 ~ 00 min, time indication is rounded to the nearest 1 hour ahead.


^{*} Default value (or after system reset): 00/00/0000 00:00:00

Press the Tursor Keys and select [REC start], and then press the ENTER Key.

Press the Cursor Keys and set time to start recording, and then press the ENTER Key. * Start date and time cannot be set in the past.

4.2.3 Save Setting KEW6310


Setting for recording end

Recording stops when preset date and time comes.

Recording method	MANUAL	AUTO
Display	//::	Year//Month/Date Hour:Minute:Second
Display at setting (at step 1 below)	Invalid	Start time + 1 hour When a preset start time is behind the present time, time indication is rounded to the nearest 30 min ahead plus 1 hour.

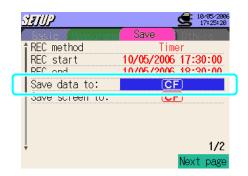
^{*} Default value (or after system reset): 00/00/0000 00:00:00

Time: Start time + 1 hour is displayed automatically.

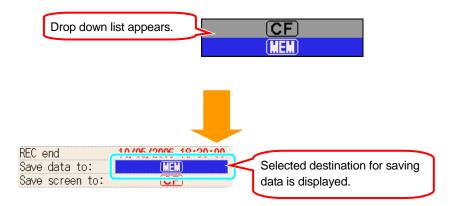
Date and time setting procedure is same to that for setting a start time. Refer to "Setting for recording start" described at the preceding pages.

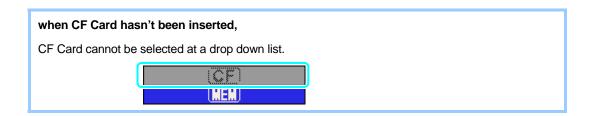
4.61 (SET UP)

^{*} End date and time cannot be set in the past.


KEW6310 4.2.3 Save Setting

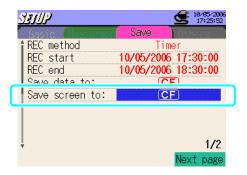
Destination for saving data


Internal Memory / CF Card


* Data is saved to a CF card automatically under default setting or after system reset when a CF card has been inserted before powering on the instrument.

- * For the details of destination for saving data, refer to "12.1 CF Card / Internal Memory" in this manual.
- Press the **Trees** Terror Keys and select [Save data to:], and then press the **ENTER** Key.

Press the Tursor Keys and select CF (CF card) or MEM (internal memory), and then press the ENTER Key.


4.2.3 Save Setting KEW6310

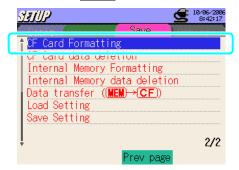
Destination for saving screenshot

Internal Memory / CF Card

* Data is saved to a CF card automatically under default setting or after system reset when a CF card has been inserted before powering on the instrument.

- * For the details of destination to save data, refer to "12.1 CF Card / Internal Memory" in this manual.
- Press the **Text** Cursor Keys and select [Save screen to], and then press the **ENTER** Key.

Setting procedure is same to that for destination for saving data. Refer to "Destination for saving data" described at the preceding pages.

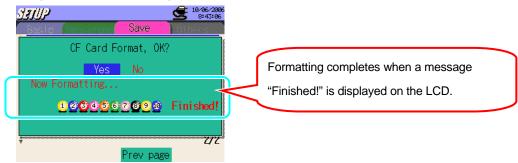

4.63 **SET UP** KEW6310

KEW6310 4.2.3 Save Setting

Formatting CF Card

All the saved data in the CF Card is cleared after formatting the CF Card. Backing up the necessary data prior to a format is recommended.

Press the Tourson Keys and select [CF Card Formatting], and then press the ENTER Key.

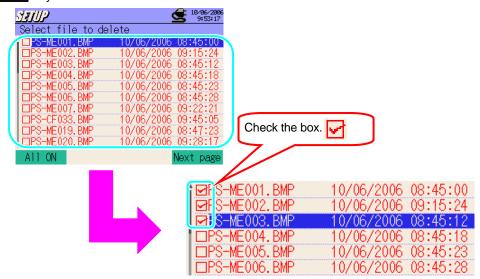

2 Press the **◄ Cursor** Keys and select "Yes" or "No", and then press the **ENTER** Key.

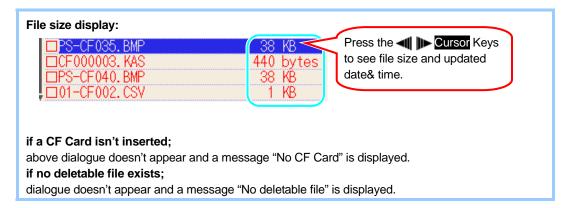
if a CF Card isn't inserted;

above dialogue doesn't appear and a message "No CF Card" is displayed.

3 Selecting "Yes" initiates formatting CF Card.

Formatting doesn't start when "No" is selected, and return to Save setting screen

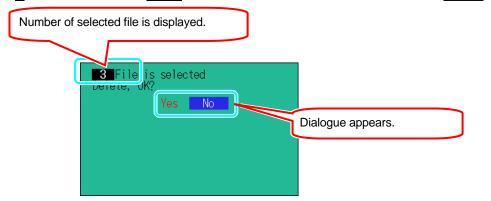

4.2.3 Save Setting KEW6310


Deleting the data in CF Card

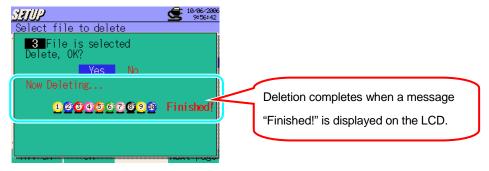
Press the Lorentz Cursor Keys and select [CF Card data deletion], and then press the ENTER Key.

Press the Lursor Keys and select a file to be deleted and check the box with the ENTER Key.

4.65 (SET UP) KEW6310


KEW6310 4.2.3 Save Setting

Press the **F1** Key to select all files. Press the **F1** Key again to cancel the selection.

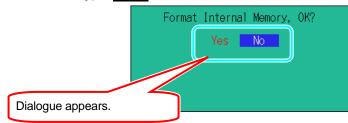

Press the F2 Key to confirm the selection.

Press the Cursor Keys and select "Yes" or "No", and then press the ENTER Key.

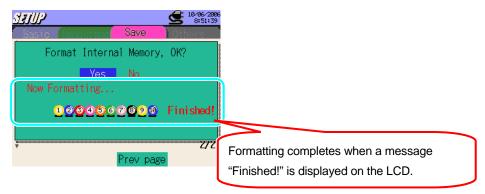
Selecting "Yes" initiates deleting the data in CF Card.

Formatting doesn't start when "No" is selected, and returns to Save setting screen.

4.2.3 Save Setting KEW6310

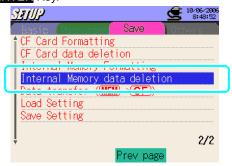

Formatting internal memory

* All data in the Internal memory will be deleted after formatting. Backing up necessary data prior to a format is recommended.

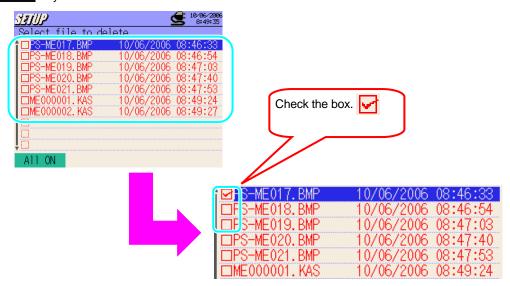

Press the Lorentz Keys and select [Internal Memory Formatting], and then press the ENTER Key.

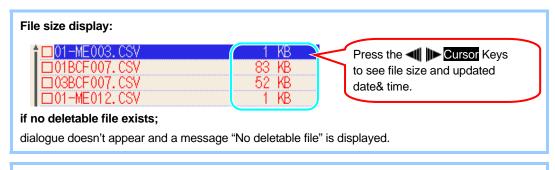
Press the Cursor Keys and select "Yes" or "No", and then press the ENTER Key.

3 Selecting "Yes" initiates formatting the Internal Memory.


- * Formatting doesn't start when "No" is selected, and return to Save setting screen.
- * Select "No" and press the ESC Key to cancel the selection and return to Save setting screen.

4.67 (SET UP) KEW6310

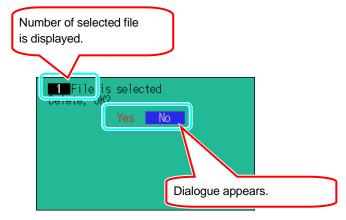

KEW6310 4.2.3 Save Setting


Deleting the data in Internal Memory

Press the Law Cursor Keys and select [Internal Memory data deletion], and then press the ENTER Key.

Press the Lave Cursor Keys and select a file to be deleted, and check the box with the ENTER Key.




Press the 1 Key to select all the files. Press the 1 Key again to cancel the selection.

4.2.3 Save Setting KEW6310

Press the F2 Key to confirm the selection.

Press the Cursor Keys and select "Yes" or "No", and then press the ENTER Key.

Selecting "Yes" initiates deleting the data in Internal Memory.

Formatting doesn't start when "No" is selected, and returns to File selection screen.

* Press the **ESC** Key to return to the Save setting screen.

4.69 (SET UP) KEW6310

KEW6310 4.2.3 Save Setting

Data Transfer

* Data saved in the internal memory remains after data transfer.

1 Press the ▲▼ Cursor Keys and select [Data transfer (MEM → CF)), and then press the **ENTER** Key

if a CF Card isn't inserted;

no dialogue appears and a message "No CF Card" is displayed.

if a CF Card hasn't been formatted;

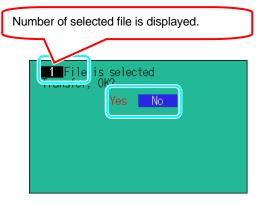
no dialogue appears and a message "Unformatted CF Card" is displayed.

if no procesable file exists;

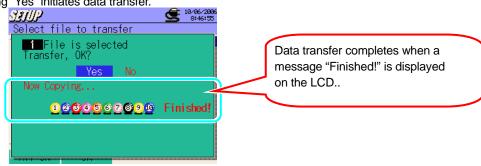
dialogue doesn't appear and a message "No processable file" is displayed.

2 Press the Lurson Keys and select the file to be transferred, and then press the ENTER Key.

Press the **F1** Key to select all files. Press the **F1** Key again to cancel the selection.


(SET UP) 4.70 KEW6310

4.2.3 Save Setting KEW6310


Press the F2 Key to determine the selection.

Press the **Transport** Entre Reys and select "Yes" or "No", and then press the **ENTER** Key.

5 Selecting "Yes" initiates data transfer.

Formatting doesn't start when "No" is selected, and return to File selection screen.

* Press the ESC Key to return to the Save setting screen.

4.71 (SET UP) KEW6310

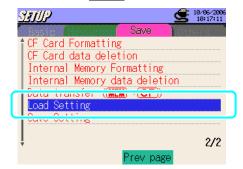
KEW6310 4.2.3 Save Setting

If the same file name exists, following dialogue appears.

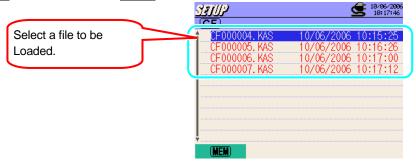
Press the Cursor Keys and select "Yes" or "No", and then press the ENTER Key. Selecting "Yes" initiates data transfer and old files are overwritten. Selecting "No" cancels data transfer.

* Backing up the necessary data prior to data transfer to prevent old data from being overwritten.

If data transfer fails, following dialogue appears.


Check free area and number of files in a CF card, and try again.

4.2.3 Save Setting KEW6310


Load setting

Preset settings saved at [Save Setting] is loaded.

Press the Toursor Keys and select [Load Setting], and then press the ENTER Key.

Press the ▲▼ Cursor Keys and select a file to be loaded, and then press the ENTER Key.

Press the **1** Key to switch the list of the files in Internal memory and CF Card.

3 Load of setting starts.

if no file exits;
following window appears.

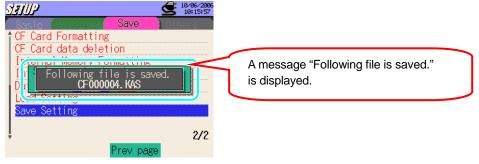
Internal No processable file
Data transier (man)
Load Setting

4.73 (SETUP) KEW6310

KEW6310 4.2.3 Save Setting

Setting save

This instrument can memorize and recall user's preferred settings once it has been saved.


1 Press the Tursor Keys and select [Save Setting], and then press the ENTER Key.

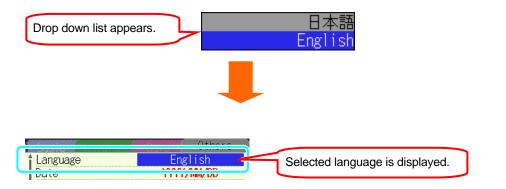
Press the Cursor Keys and select CF (CF Card) or MEM (Internal memory) to save settings, and then press the ENTER Key.

3 Setting is saved.

4.2.4 Other Setting KEW6310

4.2.4 Other Setting

Language Selection


Japanese ⇔ English

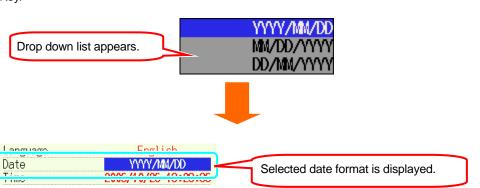
* System reset doesn't affect language setting.

Press the Tursor Keys and select [Language], and then press the ENTER Key.

Press the Tursor Keys and select "Japanese" or "English", and then press the ENTER Key.

4.75 **SET UP** KEW6310

KEW6310 4.2.4 Other Setting


Setting for date format

e.g. June 15th, 2006

Press the **ENTER** Keys and select [Date], and then press the **ENTER** Key.

Press the **Transition** Enter Enter Key. Cursor Keys and select a desirable date format, and then press the ENTER Key.

^{*} Default value (or after system reset) : MM / DD / YYYY

4.2.4 Other Setting KEW6310

Setting for current date & time

2000 / 01 / 01 00:00:00 ~ 2099 / 12 / 31 23:59:59

1 Press the Tursor Keys and select [Time], and then press the ENTER Key.

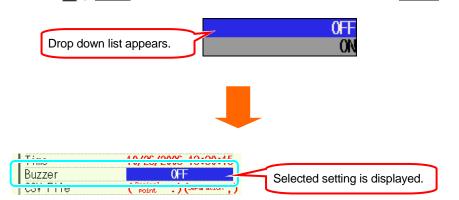
Select and modify the date/time parameters desired with **Tursor** Keys, and then press the **ENTER** Key.

4.77 (SET UP) KEW6310

^{*} System reset doesn't affect the preset current date and time.

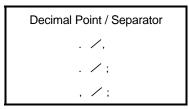
KEW6310 4.2.4 Other Setting

Setting for buzzer


ON⇔OFF

* Default value (or after system reset): ON

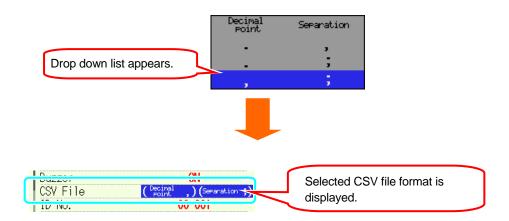
1 Press the ▲▼Cursor Keys and select [Buzzer], and then press the ENTER Key.


Press the Toursor Keys and select "ON" or "OFF", and then press the ENTER Key.

4.2.4 Other Setting KEW6310

Setting for CSV file

Select the decimal points and separators to be used in the saved data. Setting needs to be changed depending on the language setting. Default setting is applicable to normal use.



^{*} Default value (after system reset) : Decimal point/ Separator = . / ,

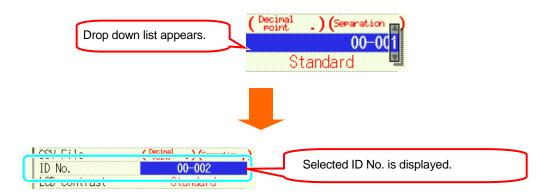
Press the **ENTER** Keys and select [CSV File], and then press the **ENTER** Key.

Press the Lursor Keys and select a desirable one, and then press the ENTER Key.

4.79 (SET UP) KEW6310

KEW6310 4.2.4 Other Setting

Setting for ID number


The number selected at the step is saved in save files. It is useful to identify data when using multiple instruments and recorded data at various places.

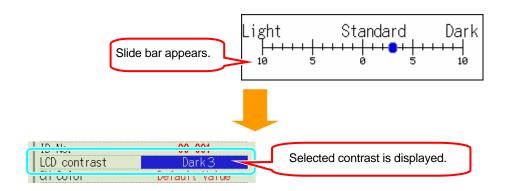
- * Default value (or after system reset): 00-001
- Press the Tursor Keys and select [ID No.], and then press the ENTER Key.

Press the Cursor Keys and select a desirable number, and then press the ENTER Key.

4.2.4 Other Setting KEW6310

Setting for LCD contrast

Light ⇔ Standard ⇔ Dark


10 ⇔ 0 ⇔ 10

* Default value (or after system reset): Standard

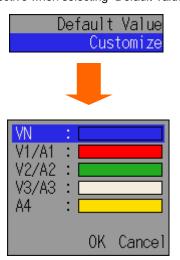
1 Press the **ENTER** Keys and select [LCD contrast], and then press the **ENTER** Key.

Press the Cursor Keys and select a desirable contrast level, and then press the ENTER Key.

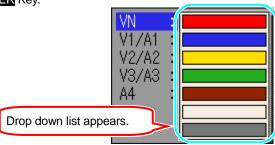
4.81 **SET UP** KEW6310

KEW6310 4.2.4 Other Setting

Setting for CH color

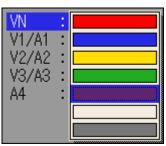

Default setting Customization

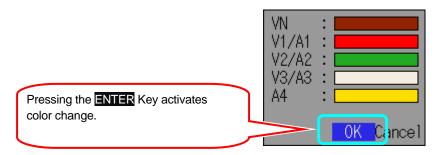
Press the Tursor Keys and select [CH Color], and then press the ENTER Key.



Press the Tursor Keys and select "Customize", and then press the ENTER Key.

* Default color setting becomes effective when selecting "Default Value".


Press the **ENTER** Keys and select the color which is subject to change, and then press the **ENTER** Key.


^{*} System reset doesn't affect the setting for CH Color..

4.2.4 Other Setting KEW6310

Press the Cursor Keys and choose desirable colors and then press the ENTER Key.

Press the Tursor Keys and point "OK", and then press the ENTER Key.

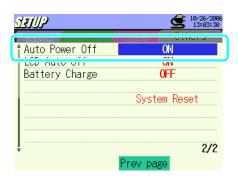
Color change doesn't activate when selecting "Cancel", and return to Setting screen.

System reset doesn't affect the customized settings.

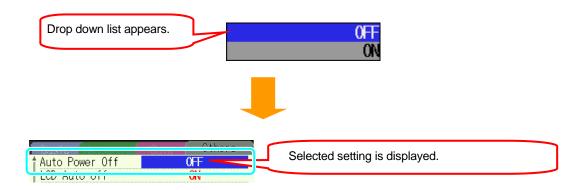
4.83 **SET UP** KEW6310

KEW6310 4.2.4 Other Setting

Setting for Auto-power-off


ON⇔OFF

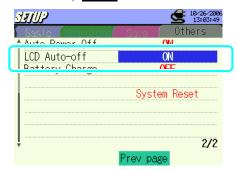
- * Default value (or after system reset) : ON
- * The instrument is automatically powered off when 5 min passes without any Key operation.


(O = Auto-power-off / activate, X = Auto-power-off / disable)

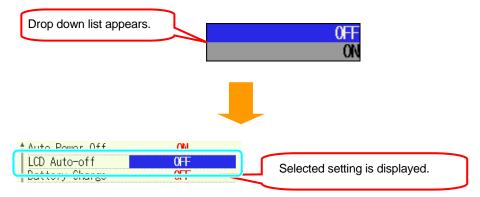
(C = 7 tate perior on 7 detivate ; 77 = 7 tate perior on 7 decisio)							
	AC-power-supply	Battery operated					
	operated						
LCD OFF	0	0					
LCD ON	Х	0					
Recording (stand-by)	Х	Х					

Press the Tursor Keys and select [Auto Power Off], and then press the ENTER Key.

Press the Tourson Keys and select "ON" or "OFF", and then press the ENTER Key.


4.2.4 Other Setting KEW6310

Setting for LCD Auto-off


Indications on the LCD are hidden with "ON" setting to prevent screen from burning and to save battery during recordings

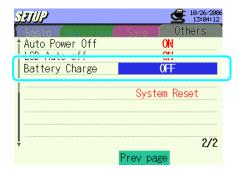
ON⇔OFF

- * Default value (or after system reset) : ON
- * Indications on the LCD disappear automatically powered off when 5 min passes without any Key operation.
- 1 Press the Tursor Keys and select [LCD Auto-off], and then press the ENTER Key.

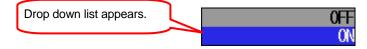
Press the Tursor Keys and select "ON" or "OFF", and then press the ENTER Key.

4.85 SET UP KEW6310

KEW6310 4.2.4 Other Setting


Battery charge

Set the Selector switch to "RE-CHARGEABLE" position prior to starting battery charge. For further details, refer to "3.2 Power supply" in this manual.

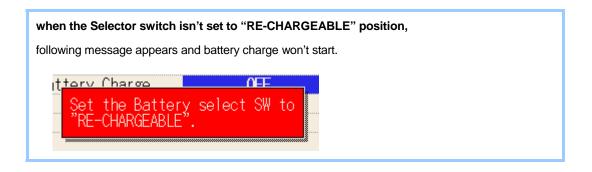

ON⇔OFF

* Default value (or after system reset) : OFF

Press the **ENTER** Key.

Press the Tursor Keys and select "ON" or "OFF", and then press the ENTER Key.

Follow the messages displayed on the LCD and select "Yes" or "No" with Cursor Keys, and then press the **ENTER** Key.

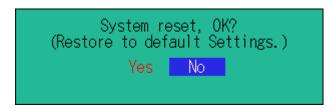


4.2.4 Other Setting KEW6310

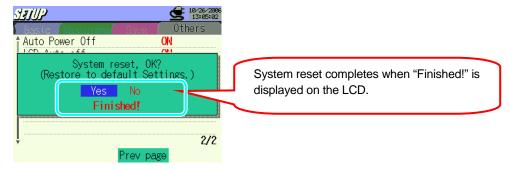
The window closes and Setting screen appears when "No" is selected. In this case, batteries aren't charged.

4.87 **SET UP**

KEW6310 4.2.4 Other Setting


System reset

Settings restore to default after system reset.


1 Press the Tursor Keys and select [System Reset], and then press the ENTER Key.

Press the Cursor Keys and select "Yes" or "No", and then press the ENTER Key.

3 Select "Yes" to initiates system reset.

Selecting "No" returns to Setting screen.

Following parameters don't restore to default after system reset.

- Language
- Time and date
- CH color

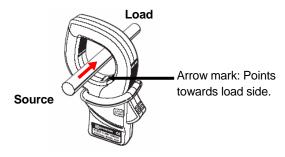
5. Wining Configurations

5.1 Important preliminary checks

Λ

DANGER

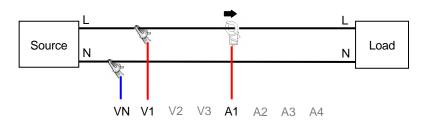
- Do not make measurements on a circuit in which electrical potential exceeds AC600V.
- Connect the Power cord to a socket outlet. Never connect it to the socket outlet of AC240V or more.
- The Clamp sensor, Voltage test leads and Power cord are to be connected to the instrument first.
- The Voltage test leads or Clamp sensors should not be connected to the input terminals of the instrument if not required for measurement.
- The instrument should always be connected on the downstream side of a circuit breaker, which is safer than the upstream side.
- Do not open-circuit the secondary side of a supplementary CT while it is energized because of the high voltage generated at the secondary side terminals.
- Be careful to avoid short-circuiting the power line with the un-insulated part of the voltage test probes
 during the setting up of the instrument. Transformer jaw tips are designed in such a way to avoid
 short-circuiting. If the circuit under test has exposed conductive parts, extra care should be taken to
 minimize the possibility of shorting.


WARNING

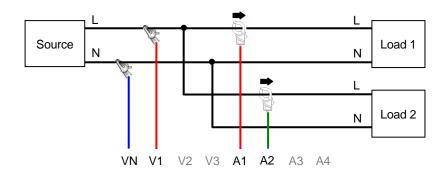
- To avoid possible electric shock and short-circuit, always turn off the line under test when setting up the instrument.
- Do not touch the un-insulated tip of Voltage test probes. The use of safety insulted gloves is recommended.

Direction for correct measurements

- Proper setting of wiring configuration should be made.
- Ensure that the arrow mark on the clamp sensor points towards to load side.



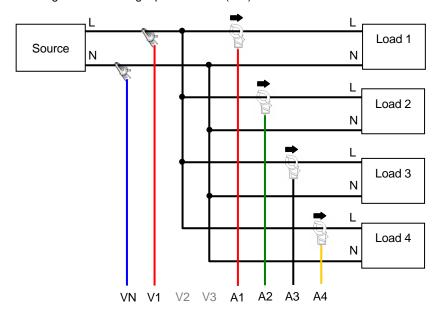
* Reverse clamping switches the symbols (+/-) for active power [P].


5.1 KEW6310

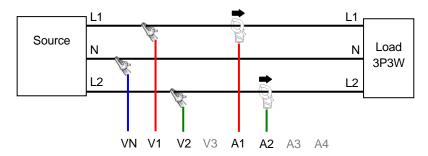
5.2 Basic Wiring Configuration

1. "1P2W x 1" Wiring method for single-phase 2-wire (1ch)

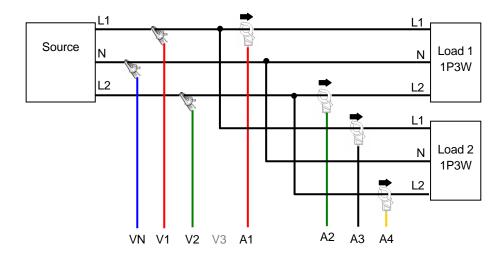
2. "1P2W x 2" Wiring method for single-phase 2-wire (2ch)



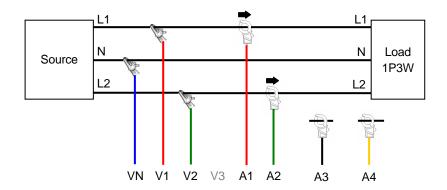
3. "1P2W x 3" Wiring method for single-phase 2-wire (3ch)



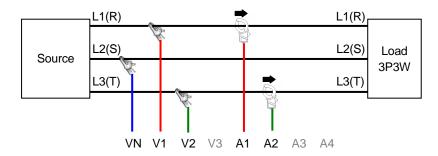
KEW6310 5.2


4. "1P2W x 4" Wiring method for single-phase 2-wire (4ch)

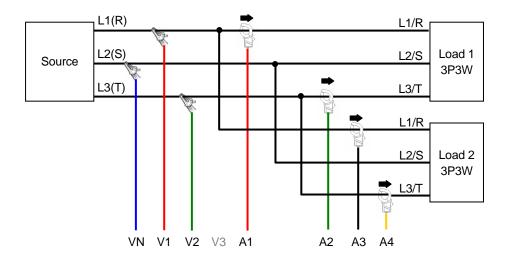
5. "1P3W x 1" Wiring method for single-phase 3-wire (1ch)



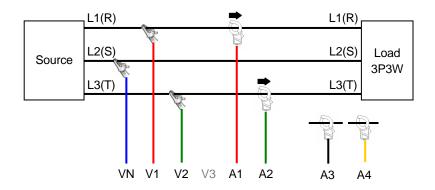
6. "1P3W x 2" Wiring method for single-phase 3-wire (2ch)



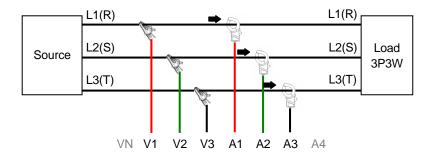
5.3 KEW6310


7. "1P3W x1 +2A" Wiring method for single-phase 3-wire (1ch) + 2-current

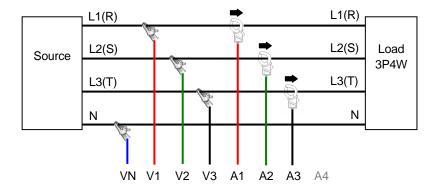
8. "3P3W x1" Wiring method for three-phase 3-wire (1ch)



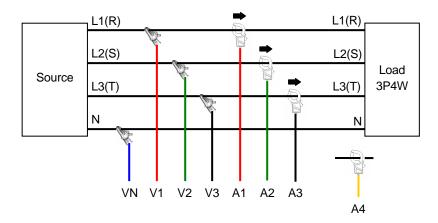
9. "3P3W x2ch" Wiring method for three-phase 3-wire (2ch)

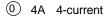


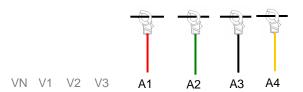
KEW6310 5.4


10. "3P3W x1 +2A" Wiring method for three-phase 3-wire (1ch) + 2-current

11. "3P3W 3A" Wiring method for three-phase 3-wire + 3-current




12. "3P4W (1ch)" Wiring method for three-phase 4-wire (1ch)

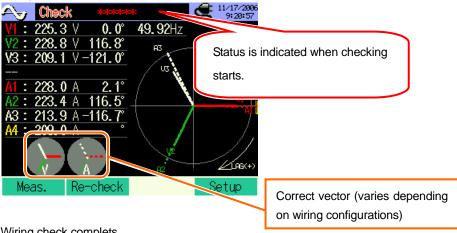


5.5 KEW6310

13. "3P4W x1 +1A" Wiring method for three-phase 4-wire (1ch) + 1-current

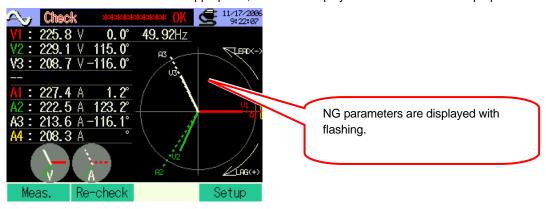
KEW6310 5.6

5.3 Wiring check


Proper wirings can be checked at WAVE Range.

5.3.1 Checking procedure

Select the WAVE Range with (Key and press the F2 Key.



2 Wiring check routine starts.

3 Wiring check complets.

OK is indicated if the connection is appropriate, and NG is displayed if the connection is improper.

5.7 KEW6310

Check screen

In case of NG, Error message appears. (Press the **ENTER** Key when OK is displayed.)

Freq : OK
Voltage Input : OK
Voltage Balance: OK
Voltage Phase : OK
Current Input : OK
Current Phase : OK
ENTER: Close

5.3.2 Criteria of Judgment

Check	Criteria of Judgment	Cause
Frequency	Frequency of V1 is between 42 and	Voltage clip is firmly connected to the DUT?
	68Hz.	Measuring too high harmonic components?
Voltage input	Voltage input is 10% or more of (Voltage	Voltage clip is firmly connected to the DUT?
	Range x VT).	Voltage test leads are firmly connected to
		the Voltage input terminals on the
		instrument?
Voltage balance	Voltage input is within ±30° of reference voltage (V1)	 Setting against the wiring under test are matched?
	* (not judged by single-phase wiring)	Voltage clip is firmly connected to the DUT?
		Voltage test leads are firmly connected to
		the Voltage input terminals on the
		instrument?
Voltage phase	Phase of voltage input is within ±10° of	Voltage test leads are properly connected?
	reference value (proper vector).	(Connected to proper channels?)
Current input	Current input is 5% or more of (Current	Clamp sensors are firmly connected to the
	Range x CT).	Power input terminals on the instrument?
		 Setting for Current Range is appropriate for input levels?
Current phase	Current input is within ±60° of reference	Arrow mark on a Clamp sensor and the
	value (proper vector).	orientation of flowing current is matched?
		(Power supply to Load)
		 Clamp sensors are connected properly?

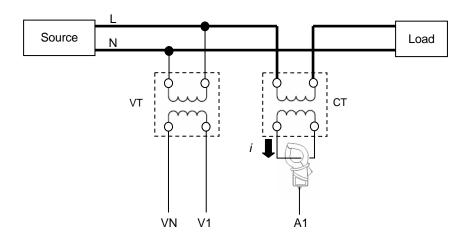
KEW6310 5.8

^{*} Check results may be affected if great power factors exist at the measurement sites.

5.4 VT/ CT KEW6310

5.4 Using supplementary VT/CT's (not supplied with the instrument)

⚠ DANGER


- Never make measurement on a circuit in which electrical potential exceeds AC600V.
- Connect the Power cord to a socket outlet. Never connect it to the socket outlet of AC240V or more.
- This instrument must be used on the secondary side of VT(transformer) and CT(current transformer).
- Do not open-circuit the secondary side of a supplementary CT while it is energized because of the high voltage generated at the secondary side terminals.

A CAUTION

 When a VT or CT is used the measurement accuracy is not guaranteed due to several factors namely phase characteristics and VT/CT accuracies.

The use of supplementary VT/CT's may be required if the voltage/current values of the circuit under test fall outside the instrument measuring range. In this case the value at the primary side of circuit can be obtained directly by measuring the secondary side with appropriate a VT or CT installed in the line under test as follows.

< Example of single-phase 2-wire (1ch) "1P2W x 1" >

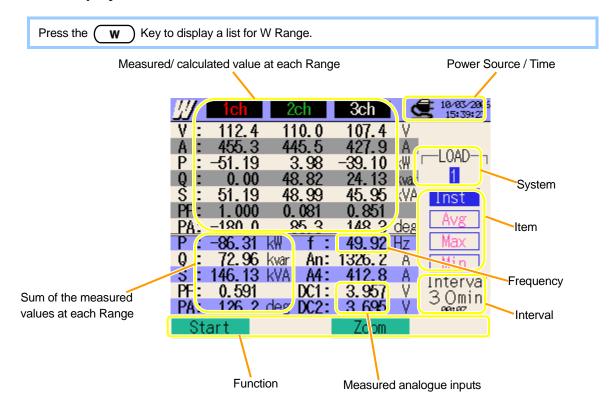
When rating of the secondary side of CT is 5A, use of Clamp sensor 8128 (50A type) and testing at 5A Range is recommended.

In this case, set the actual ratio of VT and CT to be used.

* VT ratio: see "Section 4"

* CT ratio: see "Section 4"

5.9 KEW6310

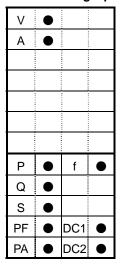

<u>KEW6310</u> 5.4 VT/ CT

KEW6310 5.10

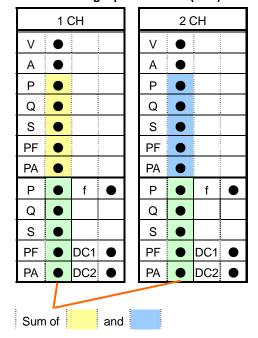
6. Instantaneous value measurement

6.1 Indications on LCD

6.1.1 Display Screen

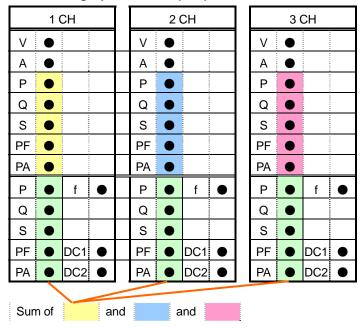

	Symbol displayed on the LCD												
V	Voltage A	Δ	Current		ant	Р	Active	+	consumption	Q	Reactive	+	Lagging
		, ,			'	Power	-	regenerating	Q	Power	_	leading	
s	Apparent	PF	Power	+	Lagging	PA	Phase	+	Lagging	4	Гтодиором		
	Power	FF	Factor	_	leading	Angle	1	leading] !	Frequency			
An	Neutral	Analogue			put	2	Analogue input			_			
	Current DC1		voltage	age at CH1		DC2	voltage	Itage at CH2					

6.1 W KEW6310

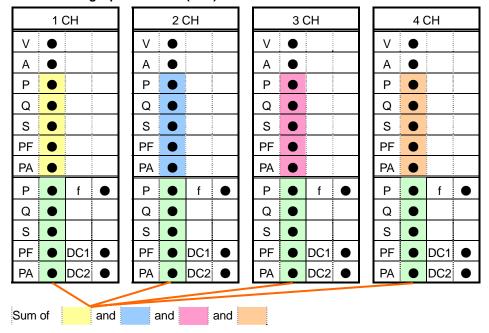

Displayed contents are depending on the selected wiring configurations.

Followings are displayed in a list depending on the selected wiring configurations.

1. 1P2W × 1 Single-phase 2-Wire (1CH)

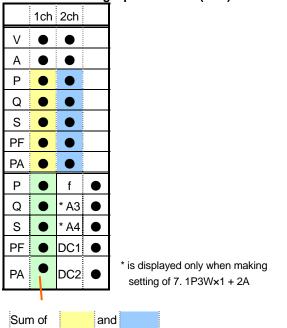


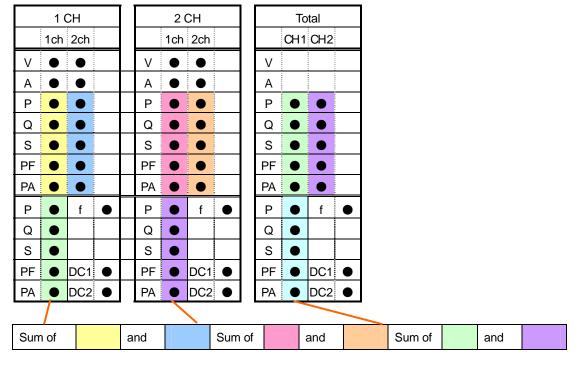
2. 1P2W x 2 Single-phase 2-Wire (2CH)



KEW6310 **W 6.**

3. 1P2W x 3 Single-phase 2-Wire (3CH)

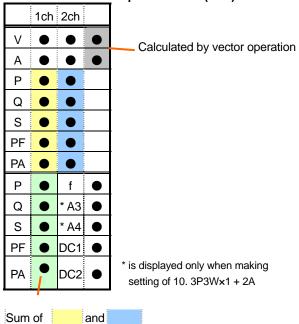

4. 1P2W × 4 Single-phase 2-Wire (4CH)


6.3 W

5. 1P3W x 1 Single-phase 3-Wire (1CH),

7. 1P3W × 1 + 2A Single-phase 3-Wire (1CH) + 2-current

6. 1P3W × 2 Single-phase 3-Wire (2CH)

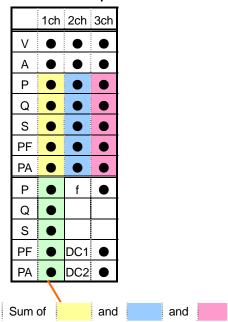


KEW6310 **W 6.4**

and

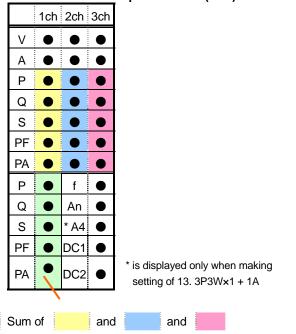
8. 3P3W × 1 Three-phase 3-Wire (1CH),

10. 3P3W x 1 + 2A Three-phase 3-Wire (1CH) + 2-current



9. 3P3W × 2 Three-phase 3-Wire (2CH)

Calculated by vector operation 1 CH 2 CH Total 1ch 2ch CH1 CH2 1ch 2ch Α lacktriangleΑ Ρ Ρ Ρ Q Q Q S S S PF PF PF PΑ PΑ PΑ Ρ f Ρ f Р f Q Q Q S S S PF DC1 PF DC1 PF DC1 DC2 DC2 PA PΑ PΑ DC2 Sum of Sum of and Sum of and


6.5 W

11. 3P3W3A Three-phase 3-Wire 3A

12. 3P4W x 1 Three-phase 4-Wire (1CH),

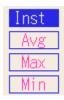
13. 3P4W x 1 +1A Three-phase 4-Wire (1CH) + 1-current

KEW6310 **W 6.6**

① 4A

1CH							
A1	•						
A2	•						
АЗ	•						
A4	•						
		DC1	•				
		DC2	•				

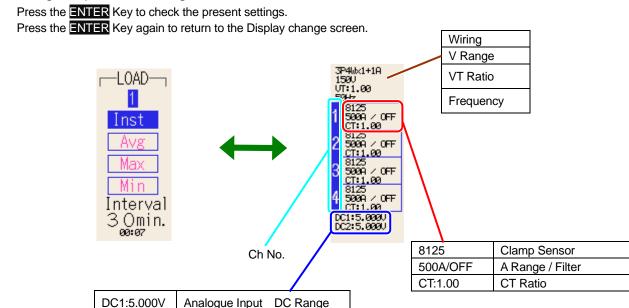
6.1.2 Switching displays


Switching systems

Press the Cursor Keys and view displays for each system.

Switching items

Press the TCursor Keys and view the instantaneous, average values etc.

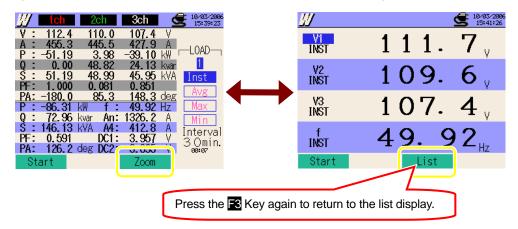


* Displayed contents are depending on the selected wiring configurations.

Analogue Input

* 5 means the total of the values at each channel.

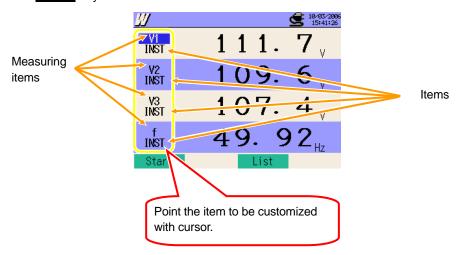
Viewing the present settings



6.8

6.1.3 Zoom

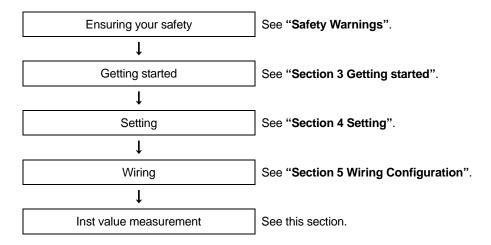
Default setting or the setting after system reset is depending on the selected wiring configurations.


Pressing the [3] Key while a list for Instantaneous Value Measurement is being displayed zooms the list.


6.9 w

Customizing the Zoom screen

Press the **LV** Cursor Keys and select the item to be customized, and then press the **ENTER** Key.

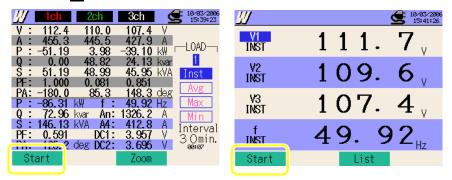

Press the ▲▼◀ II Cursor Keys and select any items, and then press the ENTER Key.

KEW6310 **W 6.10**

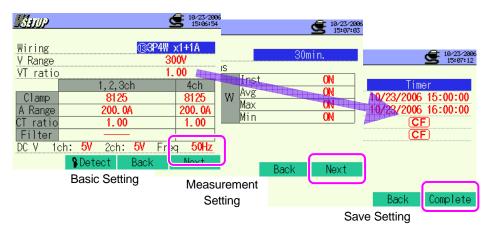
6.2 Measuring Procedure

Steps for measurement

Basic Setting	Measurement Setting	Save Setting
Wiring	Interval	Recording method
V Range	Save item (W)	Recording start
VT Ratio	* Inst value	Recording termination
Clamp Sensor	* Avg value	Destination to save data
A Range	* Max value	Destination to save screenshot
CT Ratio	* Min value	
Filter		
DC V		
Frequency		


6.11 W KEW6310

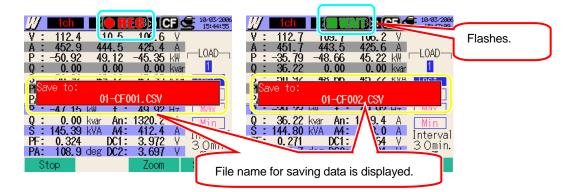
6.3 Data Saving


6.3.1 Saving Inst measurement data

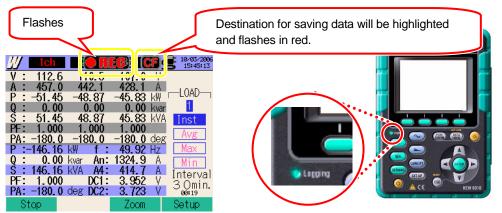
Saving procedure

Press the F1 Key at the List or Zoom screen.

Press the F4 Key and check the Basic, Measurement and Save settings. Press the Cursor Keys to select and modify the settings. Pressing the Key returns to the previous screen.

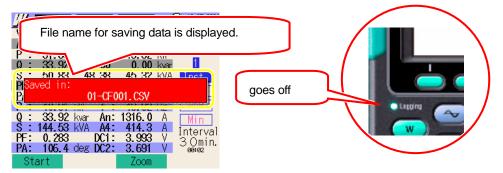


* Pressing down the 1 Key for 2 sec or more while in the status 1, step 2 can be skipped and start data saving.


For further details of Basic, Measurement and Save Settings, refer to "Section 4 Settings" in this manual.

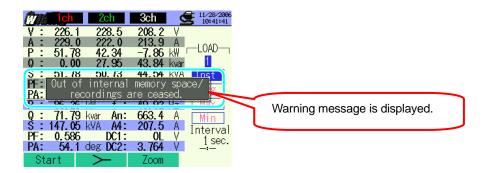
w 6.12

Manually start saving data, or press the F4 Key. Stand-by screen (WAIT) appears if saving start date and time has been specified.



Saving starts and the LED status indicator lights up.

No setting change can be made during data saving . Press the 4 Key to check the settings.


- Press the F1 Key to stop measurement. (At measurements with Timer function activated, this Key activates in the same way.)
- Measurement will end and the LED status indicator goes off.

6.13 W KEW6310

6.3.2 Limitations of saving

When data cannot be saved during a measurement,

Further data cannot be saved when max number of file or a capacity is exceeded. Previously saved files should be deleted or replaced the CF Card with a new one. For further details, see "Section 12 CF Card / Internal Memory" in this manual.

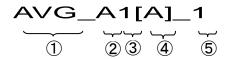
w 6.14

6.3.3 Saved data

Settings

FILE ID	:	File name
VERSION	:	Version info
ID NUMBER	:	ID number
WIRING	:	Wiring configuration
VOLT RANGE	:	Voltage Range
VT RATIO	:	VT ratio
SENSOR TYPE	:	Model name of Clamp sensor
CURRENT RANGE	:	Current Range
CT RATIO	:	CT ratio
CURRENT FILTER	:	Current Filter
DC RANGE	:	DC Range
FREQUENCY	:	Frequency
INTERVAL	:	Interval
START	:	Saving start time

Save data


File ID : 6310-01								
Saved time & date Elapsed time Instantaneous Average Max Min								
DATE	TIME	ELAPSED TIME	INST AVG MAX		MIN			
yyyy/mm/dd	h:mm:ss	hmm:ss	(±)x.xxxE±rn					
Year/Month/Date	Hour:Min:Sec	Hour:Min:Sec	(±) value x 10 ^{±n}					

^{*} e.g. of measured data

$$1.234E+5 = 1.234 \times 10^5$$

= 123400

6.15 W

Header of the saved data

1	INST	:	Instantaneous value
	AVG	:	Average value
	MAX	:	Max value
	MIN	:	Min value
2	V	:	Voltage of each phase
	Α	:	Current of each phase
	f	:	Frequency
	Р	:	Active power
	Q	:	Reactive power
	S	:	Apparent power
	PF	:	Power factor
	PA	:	Phase angle
	DC	:	Analogue input voltage
3	CH number	:	* 1 ~ 4
4			Unit
5			System

^{*} Saved data with no number at this space means the sum of the measured values.

File format and name

Measurement data is saved in CSV format, and the file name is assigned automatically.

File name : <u>01</u> - <u>CF</u> <u>001</u> <u>. csv</u>

1 2 3 4

1	Measuring	01: Inst value (W Range)
_	items	CF : CF Card
2	Save in	ME : Internal Memory
3	File number	001 ~ 999
4	Saving format	CSV

6.4 Ranges and Over-range indications6.4.1 Ranges

Ranges and decimal points for the measuring items will be automatically adjusted depending on the settings for Voltage, Current Ranges and VT / CT ratio.

Voltage Range : V, Max digit : 4-digit					
(V Range) x (VT ratio) x (120%)	Decimal point & Unit				
1.8 ~ 9.999 V	9.999 V				
10 ~ 99.99 V	99.99 V				
100 ~ 999.9 V	999.9 V				
1 ~ 9.999 k V	9.999 k V				
10 ~ 99.99 k V	99.99 k V				
100 ~ 9.999 k V	999.9 k V				
1 ~ 9.999 MV	9.999 MV				
10 ~ 12.0 MV	12.00 MV				

Current Range : A, Ma	x digit : 4-digit
(A Range) x (CT ratio) x (120%)	Decimal point & Unit
1.2 ~ 9.999 mA	9.999 mA
10 ~ 99.99 mA	99.99 mA
100 ~ 999.9 mA	999.9 mA
1 ~ 9.999 A	9.999 A
10 ~ 99.99 A	99.99 A
100 ~ 999.9 A	999.9 A
1 ~ 9.999kA	9.999kA
10 ~ 99.99kA	99.99kA
100 ~ 999.9kA	999.9kA
1 ~ 9.999 MA	9.999 MA
10 ~ 36.00 MA	36.00 MA

W 6.18

Power Range: P, Q, S, Max digit: 4-digit, Max digit (to display sum): 5-digit						
Power x VT x 120% x A x CT x 120%	Decimal point & Unit					
2.1 ~ 9.999 mW	9.999 mW					
10 ~ 99.99 mW	99.99 mW					
100 ~ 999.9 mW	999.9 mW					
1 ~ 9.999 W	9.999 W					
10 ~ 99.99 W	99.99 W					
100 ~ 999.9 W	999.9 W					
1 ~ 9.999kW	9.999kW					
10 ~ 99.99kW	99.99kW					
100 ~ 999.9kW	999.9kW					
1 ~ 9.999 MW	9.999 MW					
10 ~ 99.99 MW	99.99 MW					
100 ~ 999.9 MW	999.9 MW					
1 ~ 9.999 GW	9.999 GW					
10 ~ 99.99 GW	99.99 GW					
100 ~ 999.9 GW	999.9 GW					
1 ~ 9.999 TW	9.999 TW					
10 ~ 99.99 TW	99.99 TW					
100 ~ 432.0 TW	432.0 TW					

	Power Range corresponding to each Voltage / Current Range											
			Current Range									
		1.000A 5.000A 10.00A 20.00A 50.00A 100.0A 200.0A 300.0A 500.0A 1000A 3000A							3000A			
√ 0	150.0V	150.0	750.0	1.500k	3.000k	7.500k	15.00k	30.00k	45.00k	75.00k	150.0k	450.0k
Voltage	300.0V	300.0	1.500k	3.000k	6.000k	15.00k	30.00k	60.00k	90.00k	150.0k	300.0k	900.0k
Range	600.0V	600.0	3.000k	6.000k	12.00k	30.00k	60.00k	120.0k	180.0k	300.0k	600.0k	1.800M
ge	1000V	1.000k	5.000k	10.00k	20.00k	50.00k	100.0k	200.0k	300.0k	500.0k	1.000M	3.000M

6.19 w

Power factor: PF, Max: 4-digit

 $-1.000 \sim 1.000 PF$

Phase Angle: PA, Max: 4-digit

 $-1.000 \sim 1.000 PA$

Frequency: f, Max: 4-digit

40.00 ~ 70.00Hz

6.4.2 Over-range / Bar indication

Check the followings.

WARNING

- When the over-range indication appears on the maximum chosen range, this means that the input exceeds the maximum allowable input for the instrument. Never apply such an input to the instrument.
- When a measured value exceeds the maximum allowable input, the use of VT/CT's is recommended.
 Refer to "5-3 VT/ CT" in this manual and follow the instruction

♠ CAUTION

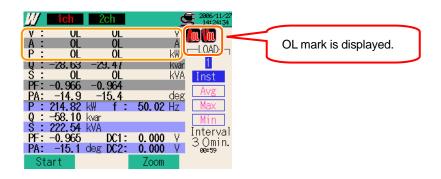
Current

When over-range indication appears on the screen, calculations are still performed. However their accuracy
may not be guaranteed.

Over-range indication

A message "OL" is displayed when measured items exceed following conditions.

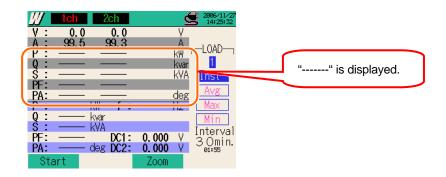
Voltage : Voltage Range x VT ratio x 120%


Current Range x CT ratio x 120%

Power : Power x VT ratio x CT ratio x 120%

e.g. Voltage Range: 300V, VT ratio: 1 => 360.0V

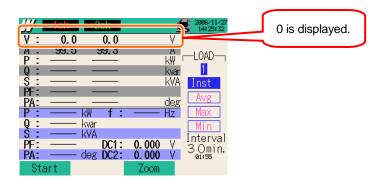
e.g. Current Range: 200A, CT ratio: 2 => 480.0A


e.g. Power : 60kW, VT ratio : 1, CT ratio : $2 \Rightarrow 144.0kW$

6.21 W KEW6310

Bar Indication

The calculations and measurements performed by this instrument are based on the voltage and frequency of V1. If the value of V1 is less than 5% of the chosen range or if the frequency is not within $40 \sim 70$ Hz, all the parameters (except for voltage and current) cannot be computed and thus displayed. In such a case, the numerical digits will be replaced by a bar indication ("- - - -") as shown:

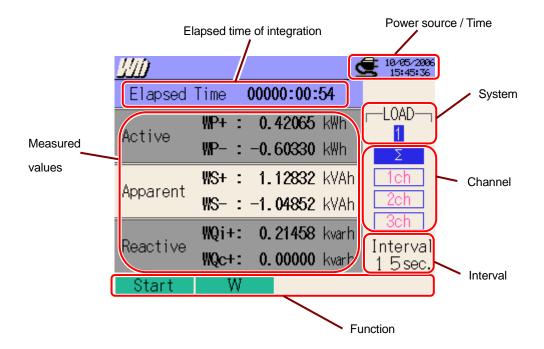


Zero Indication

Zero "0" is displayed when measured items exceeds following conditions.

Voltage : Voltage Range x VT ratio x 5% e.g. Voltage Range : 300V, VT ratio : 1 => 15V

Current : Current Range x CT ratio x 1% e.g. Current Range : 200A, CT ratio : 2 => 4A


w 6.22

7. Integration measurement

7.1 Indications on LCD

7.1.1 Display Screen

Press the Wh Key to view WH Range screen.

Symbol displayed on the LCD						
WP+	Active power energy (consumption)					
WP-	Active power energy (regenerating)					
WS+	Apparent power energy (consumption)					
WS-	Apparent power energy (regenerating)					
WQi+	Reactive power energy (lagging)					
WQc+	Reactive power energy (leading)					

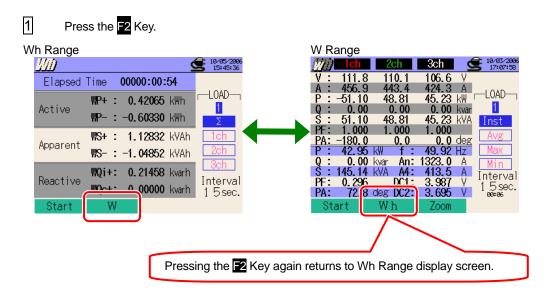
7.1 Wh

7.1.2 Switching displays

Switching systems

Press the Cursor Keys and view displays for each system.

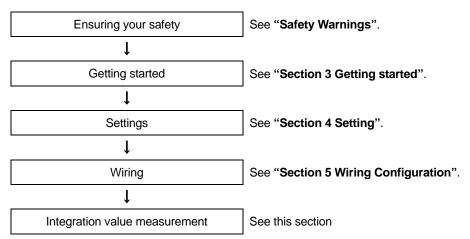
Switching channels


- * Displayed contents depends on the selected wiring configurations.
- * Σ means the sum of the values at each channel.

Wiring Configuration	①1P2W×1	②1P2W×2	31P2W×3	4 1P2W×4
Selection of System	1	1 • 2 • Σ	1 · 2 · 3 · Σ	1 · 2 · 3 · 4 · Σ
	ı	_	_	_
Selection of Channel	_	_	_	_
Selection of Channel	_	_	_	_
	_	_	_	_
	⑤1P3W x 1	⑥1P3W x 2	①3P3W3A	
Wiring Configuration	⑦1P3W x 1+2A	93P3W x 2	[®] 3P4W x 1	
Willing Configuration	®3P3W x 1		③3P4W x 1+1A	
	103P3W x 1+2A			
Selection of System	1	1 • 2 • Σ	1	
	Σ	Σ	Σ	
Selection of Channel	1ch	1ch	1ch	
Selection of Charmer	2ch	2ch	2ch	
	_	_	3ch	

KEW6310 Wh 7

7.1.3 W Range display


It is possible to access the W Range display screen from the Wh Range screen.

7.3 Wh

7.2 Measuring Procedure

Steps for measurement

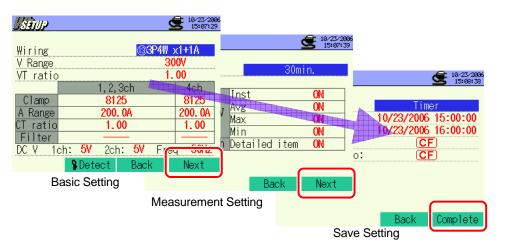
^{*} Readings are displayed right after the recording of integration value measurement starts.

Basic Setting	Measurement Setting	Save Setting
Wiring configuration	Interval	Recording method
V Range	Save item (Wh)	Recording start
VT Ratio	* Inst value	Recording termination
Clamp (manual / auto)	* Avg value	Destination to save data
A Range	* Max value	Destination to save screenshot
CT Ratio	* Min value	
Filter	* Details	
DC V		
Frequency		

KEW6310 Wh 7.4

7.3 Data Saving

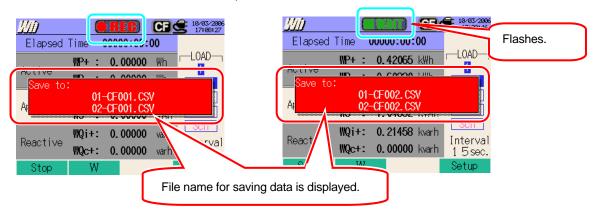
7.3.1 Saving Integration measurement data


Saving procedure

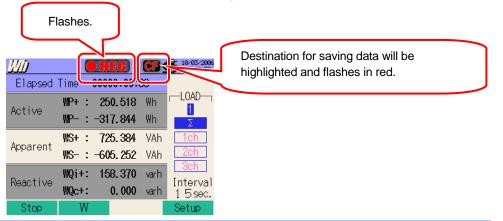
Instantaneous and integration data is saved at the same time when saving integration measurement data.

1 Press the F1 Key at the Wh Range screen.

Press the 4 Key to check Basic, Measurement and Save Settings. Press the Cursor Keys to select and modify the settings. Pressing the Key returns to the previous screen.

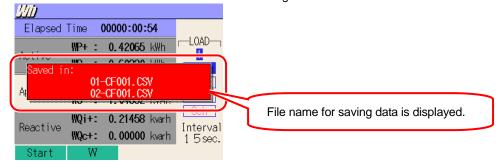


* Pressing down the 1 Key for 2 sec or more while in the status 1 skips step 2 and starts data saving.


For further details of Basic, Measurement and Save Settings, refer to "Section 4 Settings" in this manual.

7.5 Wh

Manually start saving data, or press the F4 Key. Stand-by screen (WAIT) appears if saving start date and time has been specified.



Saving starts and the LED status indicator lights up.

No setting change can be made during data saving . Press the F4 Key to check the settings.

- Press the **F1** Key to stop measurement. (At measurements with Timer function activated, this Key activates in the same way.)
- Measurement will end and the LED status indicator goes off.

KEW6310 **Wh 7.6**

7.3.2 Limitations of saving

Refer to "6.3.2 Limitations of saving" in this manual.

7.3.3 Saved data

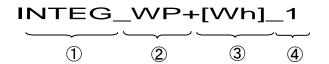
Settings

FILE ID	:	File name
VERSION	:	Version info
ID NUMBER	:	ID number
WIRING	:	Wiring configuration
VOLT RANGE	:	Voltage Range
VT RATIO	:	VT ratio
SENSOR TYPE	:	Model name of Clamp sensor
CURRENT RANGE	:	Current Range
CT RATIO	:	CT ratio
CURRENT FILTER	:	Current Filter
DC RANGE	:	DC Range
FREQUENCY	:	Frequency
INTERVAL	:	Interval
START	:	Saving start time

Save data

File ID : 6310-02					
Saved time & date			Active power	Apparent power	Reactive power
		Elapsed time	energy	energy	energy
Saveu tiiri	Saved time & date		(consumption /	(consumption /	(consumption /
			regenerating)	regenerating)	regenerating)
DATE	TIME	ELAPSED TIME	INTEG_WP	INTEG_WS	INTEG_WQ
yyyy/mm/dd	h:mm:ss	h:mm:ss	(±)x.xxxxxE±nn		
year/month/ date	hour:min:sec	hour:min:sec	(±) value x 10 ^{±n}		

^{*} Reactive power (consumption :+ / regenerating :-) will be recorded with phase information: lagging (i) or leading (c).


* e.g. of measured data $1.23456E+7 = 1.23456 \times 10^7$

= 12345600

7.7 Wh KEW6310

^{*} At Wh Range, data measured at W Range and above measurement data are recorded at the same time.

Header of the saved data

1	INTEG	:	Integration value
2	WP+	:	Active power energy (consumption)
	WP-	:	Active power energy (regenerating)
	WS+	:	Apparent power energy (consumption)
	WS-	:	Apparent power energy (regenerating)
	WQi+	:	Reactive power energy (consumption) – lagging
	WQc+	:	Reactive power energy (consumption) – leading
	WQi-	:	Reactive power energy (regenerating) – lagging
	WQc-	:	Reactive power energy (regenerating) – leading
3			Unit
4	System		

File format and name

Measurement data is saved in CSV format, and the file name is assigned automatically.

File name : 02 - CF 001 . csv

1 2 3 4

1	Measuring item	01: Integration value (Wh Range)
2	Save in	CF : CF Card ME : Internal Memory
3	File number	001 ~ 999
4	Saving format	CSV

KEW6310 **Wh 7.8**

7.4 Ranges and Over-range indications

7.4.1 Ranges

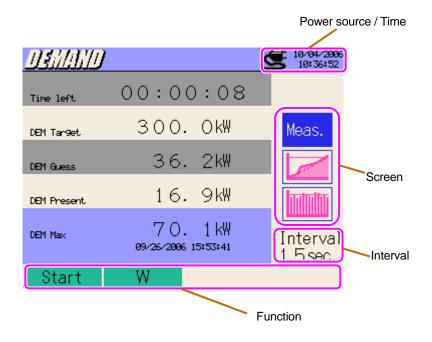
Ranges and decimal points for the measuring items will be automatically adjusted depending on the Range selected. A range shifts up when integration vaues exceed 999999.

Power Range : WP, WS, WQ, Max : 6-digit			
	Decimal point & Unit		
0.00000 ~ 9. 99999 m	9.99999 m		
10.0000 ~ 99.9999 m	99. 9999 m		
100.000 ~ 999. 999 m	999. 999 m		
1000.00 ~ 9999.99 m	9999.99 m		
10.0000 ~ 99.9999	99.9999		
100.000 ~ 999. 999	999. 999		
1000.00 ~ 9999.99	9999.99		
10.0000 ~ 99. 9999k	99.9999k		
100.000 ~ 999. 999k	999. 999k		
1000.00 ~ 9999.99k	9999.99k		
10.0000 ~ 99.9999 M	99.9999 M		
100.000 ~ 999. 999 M	999. 999 M		
1000.00 ~ 9999.99 M	9999.99 M		
10.0000 ~ 99.9999 G	99.9999 G		
100.000 ~ 999. 999 G	999. 999 G		
1000.00 ~ 9999.99 G	9999.99 G		
10.0000 ~ 99.9999 T	99.9999 T		
100.000 ~ 99.99 T	999.9999 T		
1000.00 ~ 9999. 99	9999. 99 T		

^{* &}quot;OL" is displayed when integration vaues exceed 9999.99T.

7.4.2 Over-range / Bar indication

Refer to "6.4.2 Over-range / Bar indication Limitations" in this manual.


7.9 Wh

8. Demand Measurement

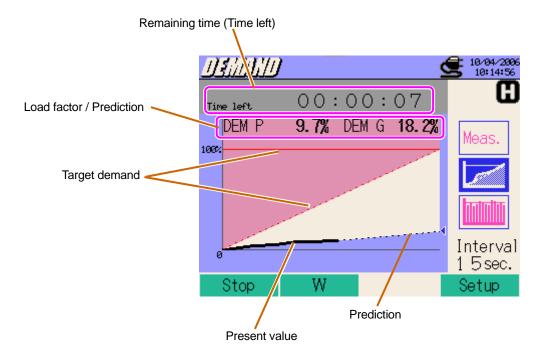
8.1 Indications on LCD

8.1.1 Display Screen

Press the (DEMAND) Key to view Demand measurement screen.

8.1 DEMAND KEW6310

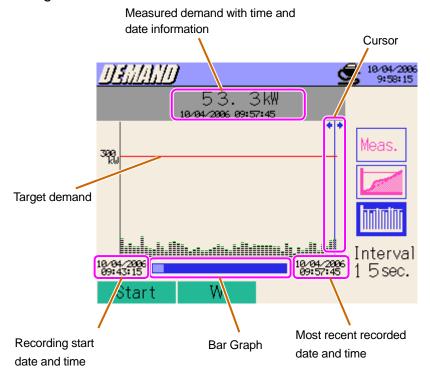
Measurement screen



Measured max demand with time and date information

Displayed parameters	Details		
Remaining time (time left)	Demand interval is counted down.		
Target value	Should be set for each measurement.		
Predicted value	Predicted demand value (average power) when preset demand interval elapses under present load. (Present value) x (Preset interval)		
	(Elapsed time) * Integration and calculations are done as time elapses.		
Present value Present value Demand value (average power) within a demand interval. "WP+ x 1 hour"			
Max demand	Max demand recorded in a measuring period is displayed. Displayed value will be refreshed if any higher demand is detected.		

KEW6310 DEMAND 8.2


Shifts in specific period

Displayed parameters	Details
	Percentage of the present value against the target value.
Load Factor	(Present value)
	(Target value)
	Percentage of the predicted value against the target value.
	(Predicted value)
Prediction	(Target value)
	Arrow mark on the graph (◄) is blue while the graph is within the target demand,
	and becomes red when the target value is exceeded.

8.3 DEMAND KEW6310

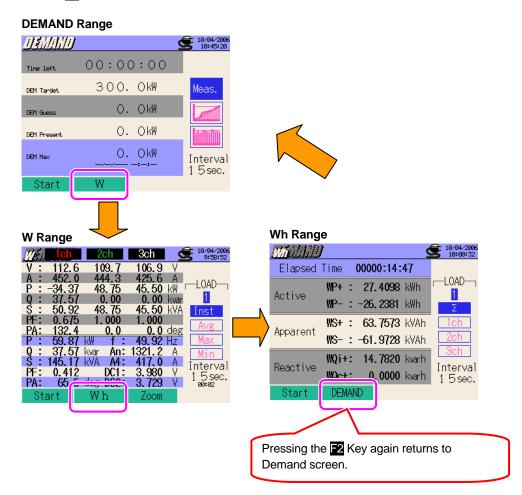
Demand change

A long press of Cursor Keys changes pages.

Displayed parameters	Details
Cursor	Use the ◄ Cursor Key to move the cursors.
Measured max demand with time and date information	Demand value is displayed with recorded time & date info where a cursor points.
Bar Graph	White bar : Percentage of hidden pages Blue bar: Percentage of the present displayed pages
Recording start date & time	Time and date when the 1 st recording started Time info of the oldest data in recent 1500 data pts is displayed when number of data exceeds 1500.
Most recent recorded date & time	Time and date of the latest recorded data is displayed.

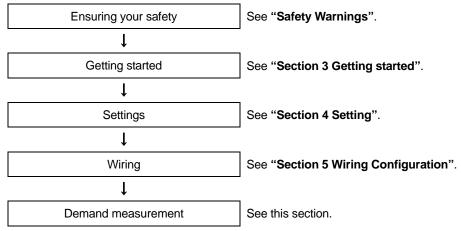
KEW6310 **(EMAND) 8.4**

8.1.2 Switching screens


Press the **Tursor** Keys to switch screens.

8.1.3 W Range / Wh Range display

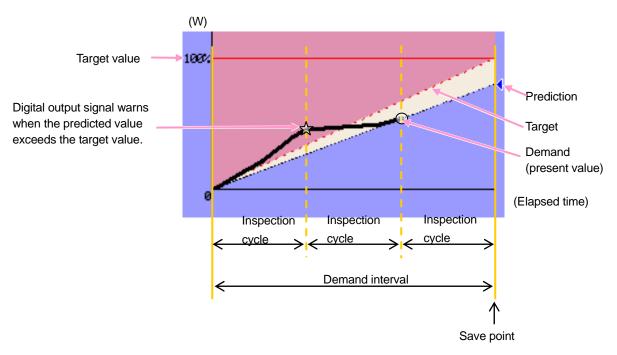
It is possible to access the W / Wh Range display screens from the Demand screen.


1 Press the F2 Key.

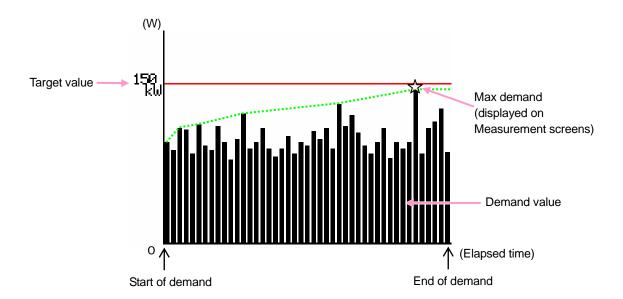
8.5 (DEMAND) KEW6310

8.2 Measuring Procedure

Steps for measurement


^{*} Readings are displayed right after the recording of demand measurement starts.

Basic Setting	Measurement Setting	Save Setting
Wiring configuration	Interval	Recording method
V Range	Save item (W)	Recording start
VT Ratio	* Inst value	Recording termination
Clamp (manual / auto)	* Avg value	Destination to save data
A Range	* Max value	Destination to save screenshot
CT Ratio	* Min value	
Filter	* Details	
DC V	Target demand	
Frequency	Demand inspection cycle	


KEW6310 B.6

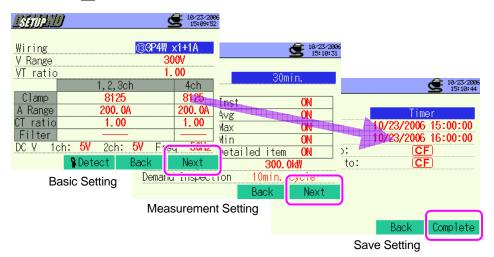
8.3 Data Saving

Operations within demand intervals

Max demand and data saving point

8.7 (DEMAND) KEW6310

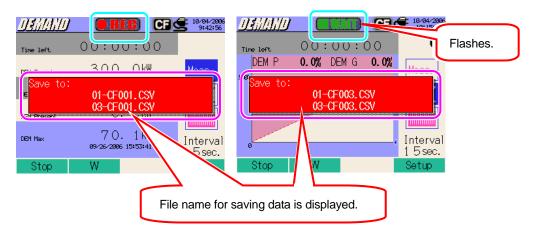
8.3.1 Saving Demand measurement data


Saving procedure

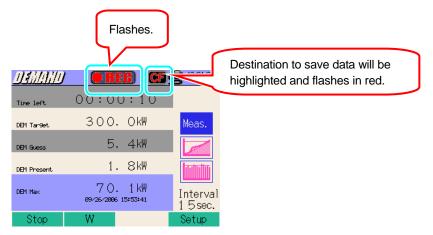
Inst measurement data is saved as well as demand data when saving demand measurement data.

Press the F1 Key at the Measurement screen.

Press the F4 Key to check Basic, Measurement and Save Settings.

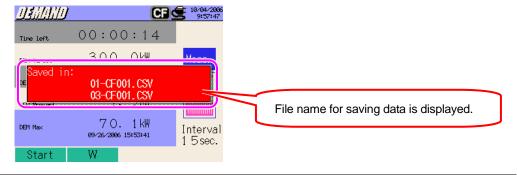


* Pressing down the F1 Key for 2 sec or more while in the status 1 skips step 2 and starts data save.


For further details of Basic, Measurement and Save Settings, refer to "Section 4 Settings" in this manual.

KEW6310 DEMAND 8.8

Manually start saving data, or stand-by screen (WAIT) appears if saving start date and time has been specified.



Saving starts and the LED status indicator lights up.

No setting change can be made during data saving . Press the F4 Key to check the settings.

- Press the Mey to stop measurement. (At measurements with Timer function activated, this Key activates in the same way.)
- Measurement will end and the LED status indicator goes off.

8.9 (DEMAND) KEW6310

8.3.2 Limitations of saving

Refer to "6.3.2 Limitations of saving" in this manual.

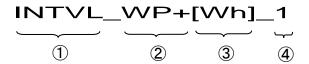
8.3.3 Saving data

Settings

tarigo		
FILE ID	:	File name
VERSION	:	Version info
ID NUMBER	:	ID number
WIRING	:	Wiring configuration
VOLT RANGE	:	Voltage Range
VT RATIO	:	VT ratio
SENSOR TYPE	:	Model name of Clamp sensor
CURRENT RANGE	:	Current Range
CT RATIO	:	CT ratio
CURRENT FILTER	:	Current Filter
DC RANGE	:	DC Range
FREQUENCY	:	Frequency
INTERVAL	:	Interval
START	:	Saving start time

Save data

	File ID : 6310-03										
Saved & da		ELAPSED TIME		Active power energy (consumption/ regenerating)	(consumption/		DEMAND	TARGET			
			Integration	INTEG_WP	INTEG_WS	INTEG_WQ		_			
DATE	TIME	ELAPSED TIME	Variation in interval	INTVL_WP	INTVL_WS	INTVL_WQ	DEM	TARGET			
yyyy/mm/d	h:mm:ss	h:mm:ss		(±)x.xxxxxxE±nn (±)x.xxxE±nn							
year/month/ date	hour:min:sec	hour:min:sec	(±) value x 10 ^{±n}								


^{*} Measured reactive power (consumption (+) / regenerating (-)) will be saved with lagging (i) / leading (c) info.

$$1.234E+5 = 1.234 \times 10^5$$

= 123400

^{*} At DEMAND Range, data measured at W Range and above measurement data are saved at the same time.

^{*} e.g. of measured data

Header of the saved data

1	INTEG	:	Integration value					
	INTVL	:	Variations in interval					
	DEM	:	Total demand					
	TARGET	:	Target value					
2	WP+	:	Active Power energy (consumption)					
	WP-	:	Active Power energy (regenerating)					
	WS+	:	Apparent Power energy (consumption)					
	WS-	:	Apparent Power energy (regenerating)					
	WQi+	:	Reactive Power energy (consumption) – lagging					
	WQc+	:	Reactive Power energy (consumption) – leading					
	WQi-	:	Reactive Power energy (regenerating) – lagging					
	WQc-	:	Reactive Power energy (regenerating) – leading					
3			Unit					
4			System					

^{* 2,3.4} will be blank if 1 is DEM or TARGET.

File format and name

Measurement data is saved in CSV format, and the file name is assigned automatically.

File name : 03 - CF 001 . CSV

1 2 3 4

1	Measuring item	03: Demand value
	weasuning item	(DEMAND Range)
(2)	Save in	CF : CF Card
(Save III	ME : Internal Memory
3	File number	001 ~ 999
4	Saving format	CSV

8.11 DEMAND KEW6310

8.4 Ranges and Over-range indications

8.4.1 Ranges

Ranges and decimal points for the measuring items will be automatically adjusted depending on the preset target values.

Target value : DEM T, Max : 4-digit	Predicted value : DEM G, Present value : DEM P, Max demand : DEM max, Max : 6-digit Decimal point & Unit
1.000 ~ 999.9 mW	99999.9 mW
1.000 ~ 999.9 W	99999.9 W
1.000 ~ 999.9kW	99999.9kW
1.000 ~ 999.9 MW	99999.9 MW
1.000 ~ 999.9 GW	99999.9 GW
1.000 ~ 999.9 TW	99999.9 TW

^{* &}quot;OL" is displayed when integration vaues exceed 99999.9.

Load factor : %, Max : 6-digit							
0.0 ~ 9999.99%							

Prediction: %, Max: 6-digit

0.0 ~ 9999.99%

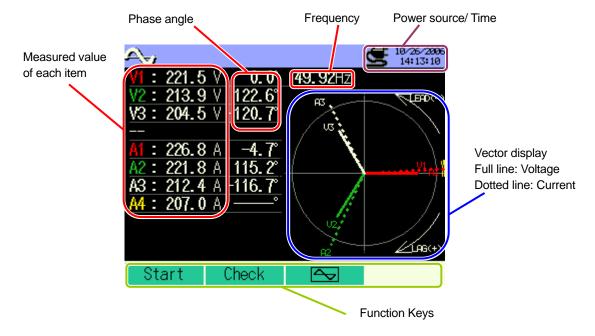
8.4.2 Over-range / Bar indication

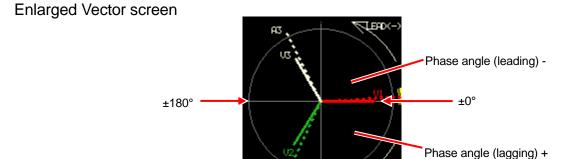
Refer to "6.4.2 Over-range / Bar indication Limitations" in this manual.

KEW6310 **DEMAND 8.12**

9. WAVE Range

9.1 Indications on LCD


9.1.1 Display Screen


Switching screens

Press the **F3** Key to switch Vector and Waveform screens.

Vector screen


Voltage and current vectors are displayed. Number of Ch for displayed vector depends on the selected wiring configuration.

Waveform screen

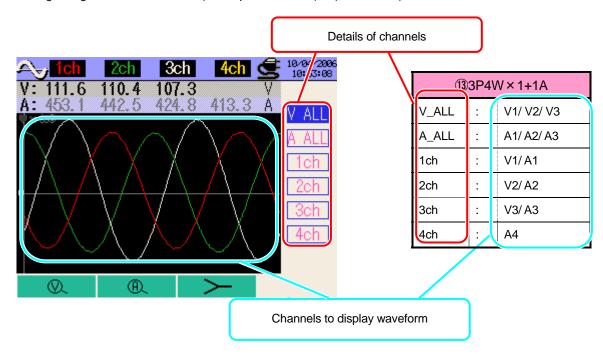
Voltage and current waveforms can be displayed together or displayed channel by channel. Number of Ch for displayed waveform depends on the selected wiring configuration.



Symbols displayed on the LCD					
changing a magnification of voltage					
® .	changing a magnification of current				
<u> </u>	switching to Vector screen				
switching to Waveform screen					

9.1.2 Switching displays

Switching channels (waveform screen)


Press the Cursor Keys to switch channels.

Displayed parameters depend on the selected wiring configuration.

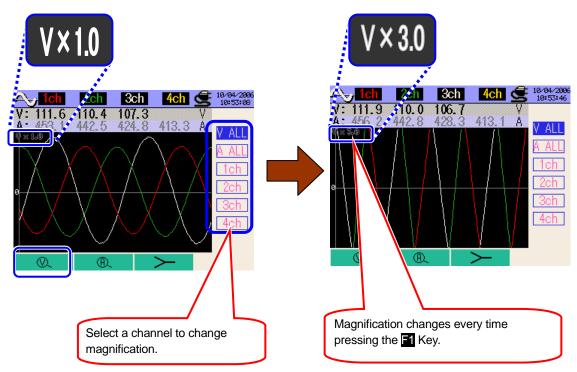
Right table indicates:

Wiring configuration ③3P4W x 1A (Three-phase 4-Wire (1ch) + 1-current)

9.3 \(\sigma\)

①1P2W x 1				21P2W x 2		3	1P2W x 3	
V		V1	٧		V1	V		V1
Α	:	A1	A_ALL	:	A1/A2	A_ALL		A1/A2/A3
1ch	:	V1/A1	1ch	:	V1/A1	1ch	:	V1/A1
			2ch	:	V1/A2	2ch		V1/A2
						3ch		V1/A3
	(4)1P2W x 4		(51P3W x 1		6	1P3W x 2
	,	4) IF 2 VV X 4		- (83P3W x 1		9	3P3W x 2
V		V1	V_ALL	:	V1/V2	V_ALL		V1/V2
A_ALL	:	A1/A2/A3/A4	A_ALL	:	A1/A2	A_ALL		A1/A2/A3/A4
1ch	:	V1/A1	1ch	:	V1/A1	1ch		V1/A1
2ch	:	V1/A2	2ch	:	V2/A2	2ch		V2/A2
3ch	:	V1/A3				3ch		V1/A3
4ch	:	V1/A4				4ch	:	V2/A4
		1P3W x 1+2A 3P3W x 1+2A			①3P3W3A ②3P4W x 1	T.	3F	P4W x 1+1A
V_ALL	:	V1/V2	V_ALL	:	V1/V2/V3	V_ALL	:	V1/V2/V3
A_ALL	:	A1/A2/A3/A4	A_ALL		A1/A2/A3	A_ALL		A1/A2/A3/A4
1ch	:	V1/A1	1ch	:	V1/A1	1ch		V1/A1
2ch		V2/A2	2ch	:	V2/A2	2ch		V2/A2
3ch	:	A3	3ch	:	V3/A3	3ch		V3/A3
4ch	:	A4				4ch	:	A4

KEW6310 9.4

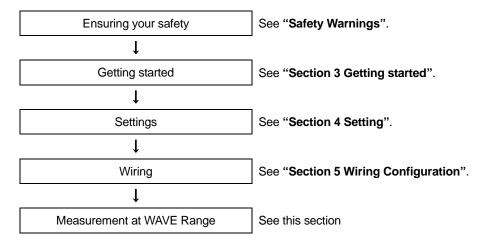

9.1.3 Zooming/downsizing

			Magnif	ication	1			
Voltage(2	2	1	0.5	0.2	0.1		
Current(®.)	3	2	ı	0.5	0.2	0.1

^{*} Default value (or after system reset): 1

Zooming/ downsizing of Voltage display

Press the **T** Cursor Key and select the channel to be zoomed in or out, and then press the **1** Key.


Zooming/ downsizing of Current display

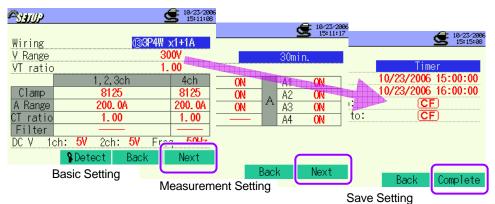
Press the **Cursor** Key and select the channel to be zoomed in or out, and then press the **2** Key. Magnification changes every time pressing the **2** Key.

9.5 (~) KEW6310

9.2 Measuring Procedure

Steps for measurement

Basic Setting	Measurement Setting	Save Setting
Wiring configuration	Interval	Recording method
V Range	Save item (waveform)	Recording start
VT Ratio		Recording termination
Clamp (manual / auto)		Destination to save data
A Range		Destination to save screenshot
CT Ratio		
Filter		
DC V		
Frequency		

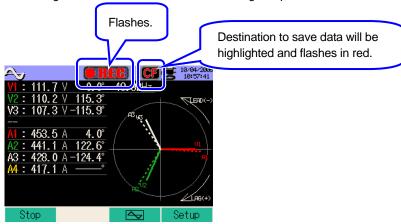

9.3 Data Saving

9.3.1 Saving Procedure

1 Press the F1 Key at the Vector screen.

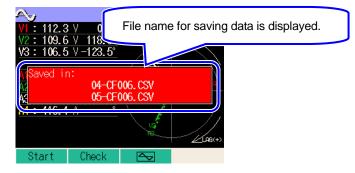
Press the F4 Key to check Basic, Measurement and Save Settings. Press the Cursor Keys to select and modify the settings. Pressing the F3 Key returns to the previous screen.

^{*} Pressing down the F1 Key for 2 sec or more while in status 1, you can skip step 2 and start data saving.


For further details of Basic, Measurement and Save Settings, refer to "Section 4 Settings" in this manual.

9.7 (~) KEW6310

Manually start saving data, or stand-by screen (WAIT) appears if saving start date and time has been specified.



Saving starts and the LED status indicator lights up.

No setting change can be made during data saving . Press the 4 Key to check the settings.

- Press the F1 Key to stop measurement. (At measurements with Timer function activated, this Key activates in the same way.)
- 6 Measurement will end and the LED status indicator goes off.

9.3.2 Limitations of saving

Refer to "6.3.2 Limitations of saving" in this manual.

9.3.3 Saving data

Settings

FILE ID	:	File name
VERSION	:	Version info
ID NUMBER	:	ID number
WIRING	:	Wiring configuration
VOLT RANGE	:	Voltage Range
VT RATIO	:	VT ratio
SENSOR TYPE	:	Model name of Clamp sensor
CURRENT RANGE	:	Current Range
CT RATIO	:	CT ratio
CURRENT FILTER	:	Current Filter
FREQUENCY	:	Frequency
INTERVAL	:	Interval
START	:	Saving start time

Save data

File ID : 6310-04 (waveform data)									
Saved time & date Elapsed time Channel Inst value									
DATE	TIME	ELAPSED TIME	СН	*Line 1/ Line 2 1 / 128 ~ 129 / 256					
yyyy/mm/d	.xxxxE±nn								
year/month/ date hour:min:sec hour:min:sec Current / Voltage (±) value x 10 ^{±n}									

^{*1}st ~ 128th measured instantaneous values are saved to the 1st line, 129th ~ 256th are to 2nd line.

	File ID : 6310-05 (vector data)					
Saved time & date Elapsed time			Instantaneous value	Average value	Max value	Min value
DATE	TIME	ELAPSED TIME	INST	AVG	MAX	MIN
yyyy/mm/d	yyyy/mm/d h:mm:ss h:mm:ss			(±)x.xxx	xE±nn	
year/month/ date	hour:min:sec	hour:min:sec	(±) value x 10 ^{±n}			

^{*} e.g. of measured data

$$1.234E+5 = 1.234 \times 10^5$$

= 123400

Header of the saved data

* File ID: 6310-04 (waveform data)

1	1 ~ 128	: sampling sequence
2	129 ~ 256	: ditto (① + 128)

^{*} File ID: 6310-05 (vector data)

_			
1	INST	:	Instantaneous value
	AVG	:	Average value
	MAX	:	Max value
	MIN	:	Min value
2	V	:	Voltage of each phase
	А	:	Current of each phase
3	CH number	:	1 ~ 4
4	Unit		

^{*} when [deg] is displayed at space ④, it means phase angle

File format and name

Measurement data is saved in CSV format, and the file name is assigned automatically.

File name

: 04 - CF 001 . csv

<u></u>	<u> </u>	<u> </u>	
1	2	3	4

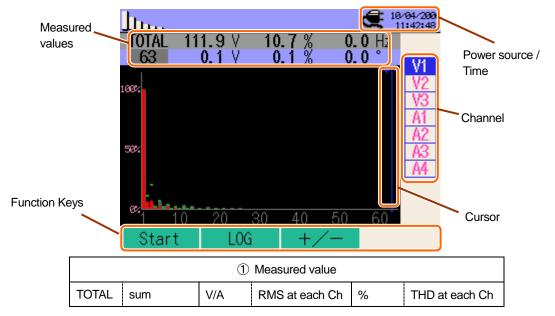
1	Measuring item	04 : Measured waveform data		
		05 : Measured vector data		
2	Save in	CF : CF card ME : Internal memory		
3	File number	001 ~ 999		
4	Saving format	CSV		

9.4 Ranges and Over-range indications

9.4.1 Ranges

Ranges and decimal points for the measuring items will be automatically adjusted depending on the Range selected. For further details, refer to "6.5.1 Ranges" in this manual.

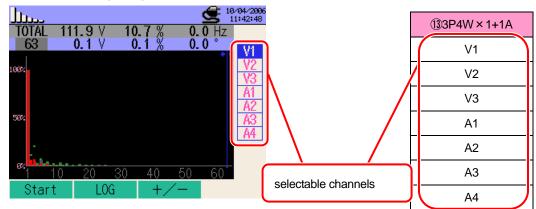
9.4.2 Over-range / Bar indication


Refer to "6.4.2 Over-range / Bar indication Limitations" in this manual.

10. Harmonic Analysis

10.1 Indications on LCD

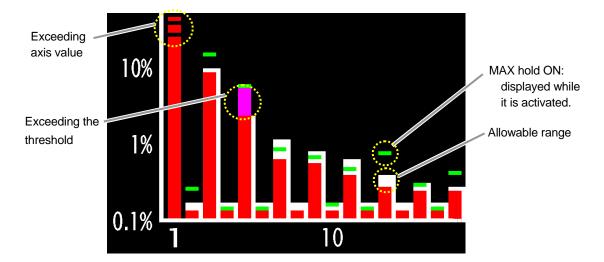
10.1.1 Display Screen


Press the Key to view bar graph for harmonics.

② Measured value (values of each order pointed by cursor)				
1 ~ 63 Harmonic order	V/A RMS	Percentage of the fundamental wave (1 st)	° Phase angle	

Displayed contents depend on the selected wiring configuration.

Right table indicates wiring configuration (3)3P4W x 1A (Three-phase 4-Wire (1CH) + 1-current)



10.1 (ML) KEW6310

①1P2W x 1	②1P2W x 2	31P2W x 3
V1	V1	V1
A1	A1	A1
	A2	A2
		A3
		⑥1P3W x 2
Ø4D2W v 4	⑤1P3W x 1	⑦1P3W x 1+2A
4 1P2W x 4	®3P3W x 1	93P3W x 2
		⑩3P3W x 1+2A
V1	V1	V1
A1	V2	V2
A2	A1	A1
A3	A2	A2
A4		A3
		A4
①3P3W3A	(33P4W x 1+1A	
[®] 3P4W x 1	1931 4VV X 1+1X	
V1	V1	
V2	V2	
V3	V3	
A1	A1	
A2	A2	
А3	A3	
	A4	

KEW6310 10.2

Graph

Red bar graph

: present value

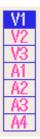
White bar graph

: preset allowable range (refer to clause 4.2.2 for further details)

Green mark

: max recorded value during a measurement, displayed while MAX HOLD function is activated. Refer to clause **4.2.2** for further details about MAX HOLD function.

- * Max value will be reset when;
- pressing the **ESC** Key at least 2 sec,
- switching channels with **Tursor** Keys. (except when saving data), or
- starting data saving.


10.3 KEW6310

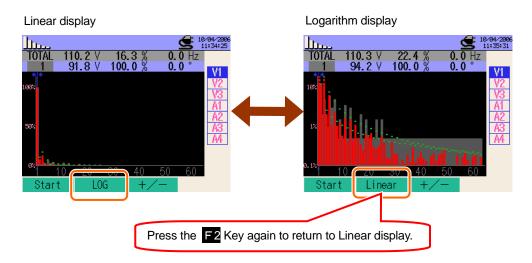
KEW6310

10.1.2 Switching displays

Switching channels

Press the **AV** Cursor Keys to switch channels.

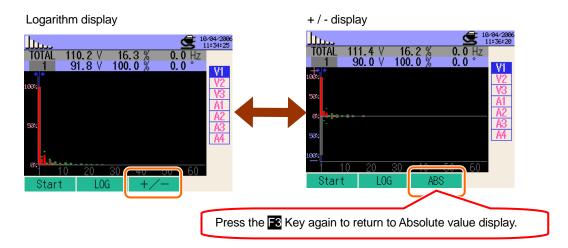
Press the Cursor to switch values per order.


10.4

10.1.3 Logarithm display

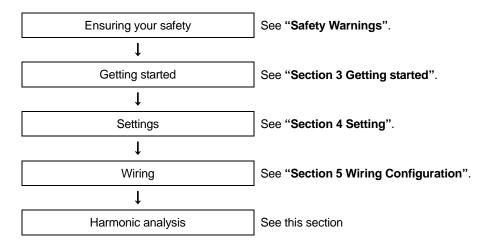
Logarithm and +/- displays can be switched over according to following procedures.

Logarithm display


Press the F2 Key.
Linear display with ticks of 0% to 100% and Logarithm display with ticks of 0.1% to 10% are switchable on vertical axis.

+/- display

Press the F3 Key.


Absolute value display with ticks of 0% to 100% and "+/-" display with ticks of -100% to 100% are switchable on vertical axis.

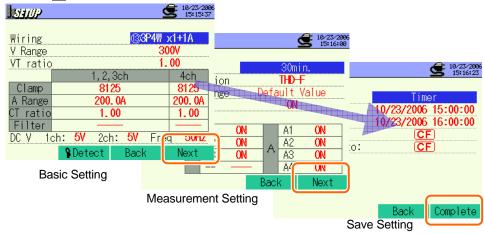
10.5 KEW6310

10.2 Measuring Procedure

Steps for measurement

Basic Setting	Measurement Setting	Save Setting
Wiring configuration	Interval	Recording method
V Range	THD calculation	Recording start
VT Ratio	Allowable range	Recording termination
Clamp (manual / auto)	MAX HOLD	Destination to save data
A Range	Save item	Destination to save screenshot
CT Ratio		
Filter		
DC V		
Frequency		

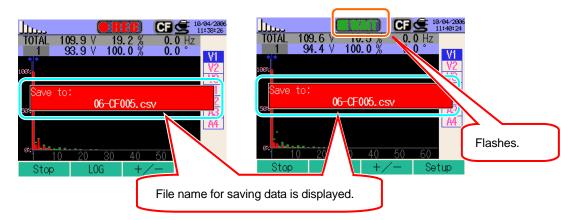
10.6


10.3 Data Saving

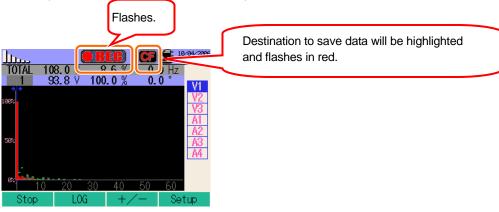
10.3.1 Saving Procedure

1 Press the F1 Key first.

Press the F4 Key to check Basic, Measurement and Save Settings.

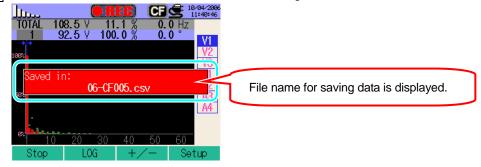


* Pressing down the F1 Key for 2 sec or more skips step 2 and start data saving.


For further details of Basic, Measurement and Save Settings, refer to "Section 4 Settings" in this manual.

10.7 (MLL.) KEW6310

Manually start saving data, or stand-by screen (WAIT) appears if saving start date and time has been specified.



Saving starts and the LED status indicator lights up.

No setting change can be made during data saving . Press the 🔀 Key to check the settings. The channels with "OFF" setting aren't displayed.

- Press the F1 Key to stop measurement. . (At measurements with Timer function activated, this Key activates in the same way.)
- 6 Measurement will end and the LED status indicator goes off.

KEW6310 (10.8)

10.3.2 Limitations of saving

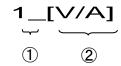
Refer to "6.3.2 Limitations of saving" in this manual.

10.3.3 Saving data

Settings

FILE ID	:	File name
VERSION	:	Version info
ID NUMBER	:	ID number
WIRING	:	Wiring configuration
VOLT RANGE	:	Voltage Range
VT RATIO	:	VT ratio
SENSOR TYPE	:	Model name of Clamp sensor
CURRENT RANGE	:	Current Range
CT RATIO	:	CT ratio
FREQUENCY	:	Frequency
INTERVAL	:	Interval
START	:	Saving start time

Save data


File ID : 6310-06						
Saved time	& date	Elapsed time	Channel	RMS	Total THD	Inst at each order
DATE	TIME	ELAPSED TIME	СН	TOTAL	THD	1_[V/A] ~ 1_[deg] ~ 63_[V/A] 63_[deg]
yyyy/mm/dd	yyyy/mm/dd h:mm:ss h:mm:ss				(±)x.xxx	xE±nn
year/month/ date	hour:min:sec	hour:min:sec	V/A	(±) value x 10 ^{±n}		e x 10 ^{±n}

^{*} e.g. of measured data

$$1.234E+5 = 1.234x10^5$$

= 123400

10.9 KEW6310

Header of the saved data

1	1 ~ 63	:	Order
2	V/A	:	Voltage / Current
	deg	:	Phase angle

File format and name

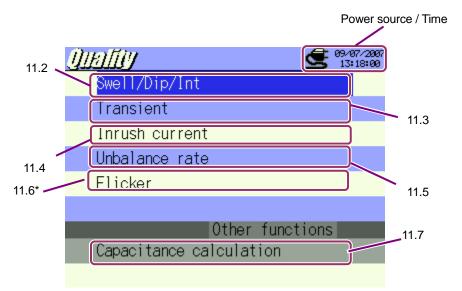
File Name : $\underline{06} - \underline{CF} \underline{001} \underline{...} \underline{csv}$

1) 2 3 4

Ī	1	Measuring item	06 : Harmonic Analysis	
	(2)	Save in	CF : CF card	
	C Gave III		ME : Internal memory	
	3	File number	001 ~ 999	
	4	Saving format	CSV	

11. Power quality KEW6310

11. Power Quality

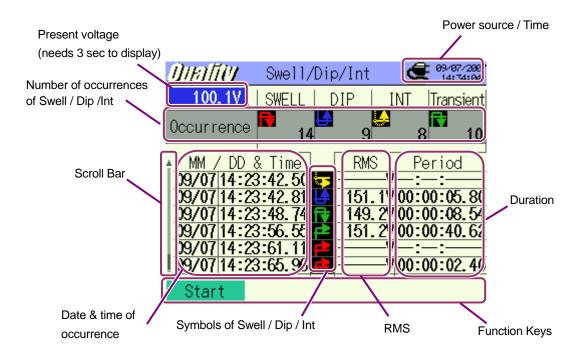

Power Quality	Waveform	Symptoms	Adverse effects
rower Quality	vvaveloiiii	Symptoms Inverter and thyristor circuits	Burnout of capacitors and
Harmonic		(phase-control circuit) are used for the control circuit of general devices; these circuits affect currents and causes harmonics.	reactors, buzzes from trans- formers, malfunction of circuit beakers, flicker in screen or noises on stereos due to currents with harmonic components.
Swell	RMS	Inrush currents occur when switches for power lines are on, and then voltages increase instantaneously.	
Dip	RMS	Inrush currents occur when motor loads are activated, and dip in current occurs.	Shutdown of devices or robots or reset on PC and business machines may be caused.
Int	RMS	Power supply is interrupted for a second due to lightning strikes.	
Transient, Over-voltage (impulse)		Contact failure at a circuit breaker, magnet or relay.	Damage to a power source or reset of the device may occur due to a drastic voltage fluctuation (spike).
Inrush current		Instantaneous large currents (surge) flow on devices with a motor, incandescent lamp and flat capacitor when powering them on.	Influences on welded contacts for Power switch, blowing fuse, trip on breaker, rectifier circuit and fluctuations in power supply voltage may occur.
Unbalance rate		Heavy loading on specific phase due to fluctuations in load of power line or drastic extension of installations. Distortions of voltage / current waveforms, dip and negative sequence voltages are caused.	Influences on voltage, current, motor operation occur; negative sequence voltage and harmonics occur.
Flicker*	ent function is only available with ve	Too much load is caused on certain phases due to increase and decrease of the loads connected to each phase such as supply lines or heavy use of specific equipments, as a result, Distortions on voltage and current waveforms, dip and reversed voltages are observed.	Unbalanced or reversed voltages and harmonics occur and result in motor unstability, trip of 3E circuit breaker or heating due to overload.

^{*} Flicker measurement function is only available with ver.2.00 or later.

11.1 QUALITY KEW6310

11.1 Display Screen

Press the (QUALITY) Key to view List display.


^{*} Flicker measurement function is only available with ver.2.00 or later.

Press the **Cursor** Keys and select any parameters, and then press the **ENTER** Key to display each measurement screen. Pressing the **ESC** Key returns to list display.

KEW6310 QUALITY 11.2

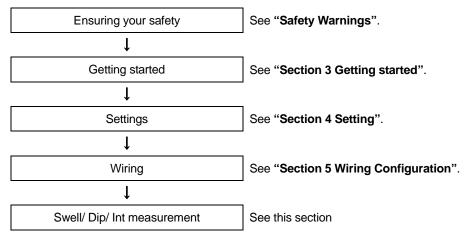
11. 2 Swell / Dip / Int measurement

11.2.1 Display Screen

^{*} At Swell measurement, max RMS (voltages in duration period) is displayed and at Dip & Int measurements, min RMS is displayed respectively.

Scroll Bar

Scroll bar is associated with the ▲▼ Cursor Keys.



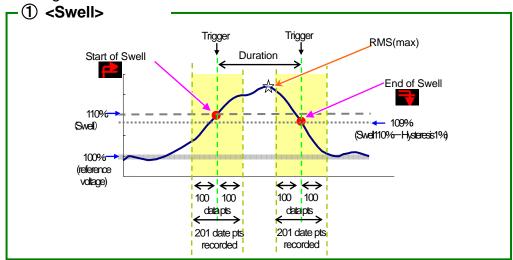
^{*} Function available with ver2.00 or later.

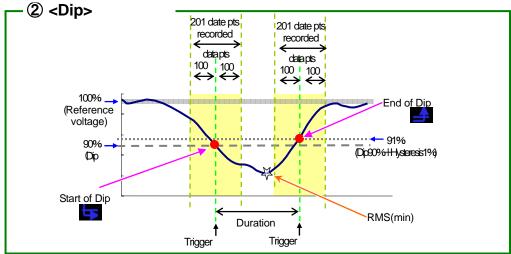
11.3 (QUALITY) KEW6310

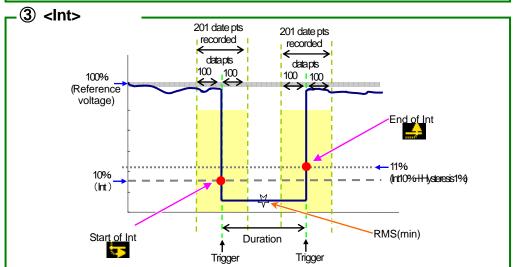
11.2.2 Measuring Procedure

Steps for measurement

^{*} At Swell/ Dip/ Int measurements, measured values will be displayed as recording starts.

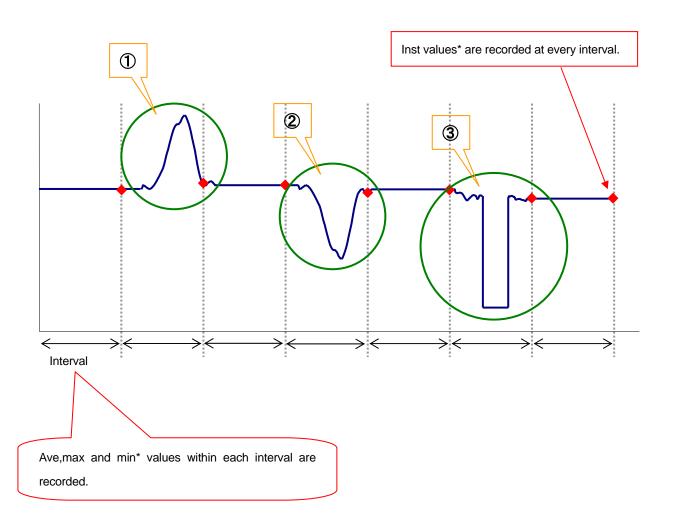

Measurement Setting	Save Setting
Interval*	Recording method
Reference voltage	Recording start
Transient*	Recording termination
Swell	Destination to save data
Dip	Destination to save screenshot
Short-interruption (Int)	
Hysteresis	
Trigger point	


^{*} Function available with ver2.00 or later.


KEW6310 QUALITY 11.4

Timing of data recording

<Recording at event occurrence>



11.5 QUALITY KEW6310

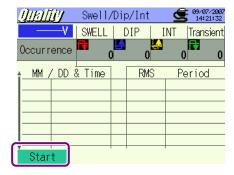
<Recording at every interval>

.* Function available with ver2.00 or later.

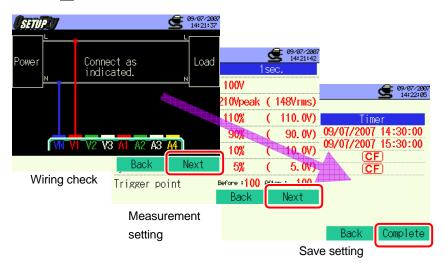
%Inst value : Avg of 100 data (@50Hz) obtained in the preset inst interval of 1 sec (RMS)

Avg value: Avg of rms values obatained in the preset inst interval

 $\mbox{\it Max}$ value : $\mbox{\it Max}$ rms values obtained in the preset inst interval


Min value: Min rms values obtained in the preset inst interval

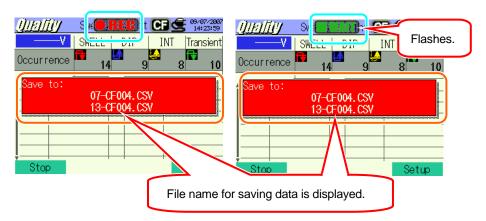
KEW6310 QUALITY 11.6


11.2.3 Data Saving

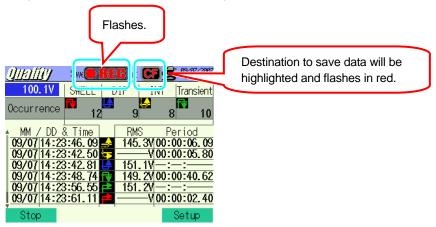
Saving procedure

1 Press the F1 Key first.

Press the F4 Key to check Wiring, Measurement and Save Settings.

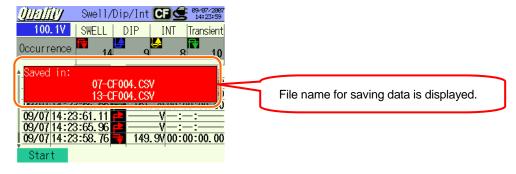

^{*} Pressing down the 1 Key for 2 sec or more skips step 2 and start data saving.

For further details of Basic, Measurement and Save Settings, refer to "**Section 4 Settings**" in this manual. Terminals to be used in these measurements are VN and V1 only.


11.7 (QUALITY) KEW6310

3

Manually start saving data, or stand-by screen (WAIT) appears if saving start date and time has been specified.



Saving starts and the LED status indicator lights up.

No setting change can be made during data saving. Press the 4 Key to check the settings.

- Press the 1 Key to stop measurement. (At measurements with Timer function activated, this Key activates in the same way.)
- 6 Measurement will end and the LED status indicator goes off.

KEW6310 QUALITY 11.8

11.2.4 Limitations of saving

Refer to "6.3.2 Limitations of saving" in this manual.

11.2.5 Saving data

Settings

FILE ID	:	File name
VERSION	:	Version info
ID NUMBER	:	ID Number
FREQUENCY	:	Frequency
REFERENCE VOLTAGE	:	Reference Voltage
SWELL	:	Threshold value for SWELL (%)
DIP	:	Threshold value for DIP(%)
INT	:	Threshold value for INT(%)
HYSTERESIS	:	Hysteresis (%)
TRIGGER POINT	:	Trigger point
START	:	Save start time

Save data

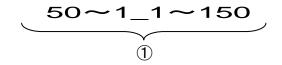
File ID : 6310-07							
Saved time & date Item Start / End						nd	
DATE	TIME	ITEM*		ITEM* I/O			
yyyy/mm/dd	h:mm:ss	SWELL	DIP	INT	1	0	1/0
Year/Month/Day	Hour:Min:sec	Swell	Dip	Int	START	END	START to END

Duration		Max /	/ Min	Data	
DURATION		MAX/MIN		201 data pts	
::	h:mm:ss.ss	Swell	Dip/Int	(±)xxxxE±nn	
Start	End	Max	Min	* (±) value x 10 ^{±n}	

^{*} END is recorded when a power supply is interrupted and START is recorded when power is restored.

 $1.234E+5 = 1.234 \times 10^5$

= 123400


File ID : 6310-013*						
Saved time & date Elapsed time Instantaneous Average Max Min				Min		
DATE TIME ELAPSED TIME		INST	AVG	MAX	MIN	
yyyy/mm/dd h:mm:ss h:mm:ss (±)x.xxxE±nn						
Year/Month/Date Hour:Min:Sec Hour:Min:Sec (±) valuex 10 ^{±n}						

^{*} Function available with ver2.00 or later.

11.9 QUALITY

^{*} e.g. of measured data

Header of the saved data

When Trigger point has been set to Past: 50 and Next: 150:

① 201 data pts in total : Data No.

File format and name

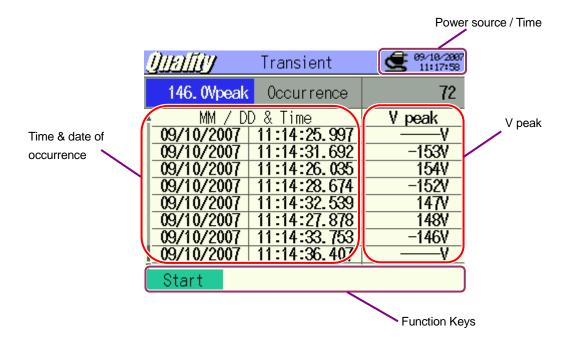
File Name : <u>07</u> - <u>CF</u> <u>001</u> <u>. csv</u>

1 2 3 4

1	Measuring item	07 : Swell / Dip / Int Measurement
2	Save in	CF : CF Card ME : Internal Memory
3	File number	001 ~ 999
4	Saving format	CSV

File Name : $\underline{13} - \underline{CF} \underline{001} \underline{.} \underline{csv}$

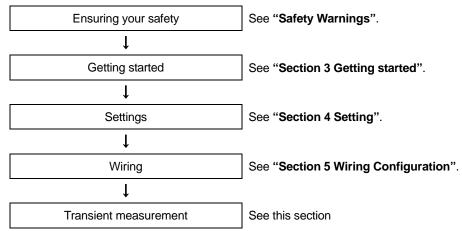
1 2 3 4


1	Measuring item	13 : Voltage Interval data
② Sa	Save in	CF : CF Card
	oavo III	ME : Internal Memory
3	File number	001 ~ 999
4	Saving format	CSV

^{*} File Name: 13-CF001.CSV is used when saving data on ver2.00 or later.

11.3 Transient measurement

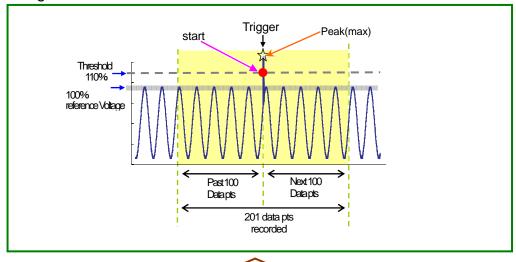
11.3.1 Display Screen

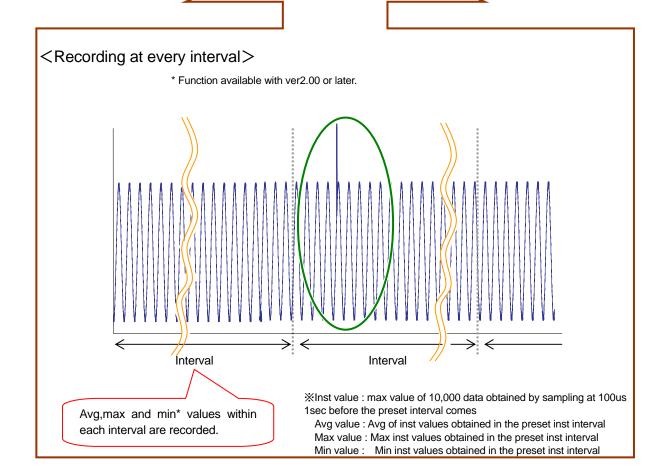

Select "Transient" and press the **ENTER** Key to view Transient Measurement screen.

11.11 QUALITY KEW6310

11.3.2 Measuring Procedure

Steps for measurement


^{*} At Transient measurements, measured values are displayed when recording starts.

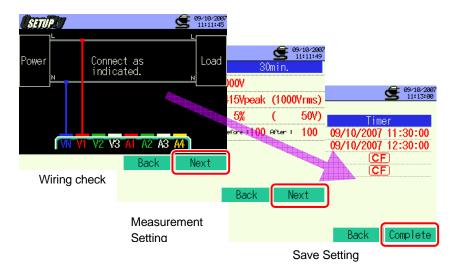

Measurement Setting	Save Setting
Interval*	Recording method
V Range	Recording start
Threshold	Recording termination
Hysteresis	Destination to save data
Trigger Point	

^{*} Flicker measurement function is only available with ver.2.00 or later.

Timing of data recording

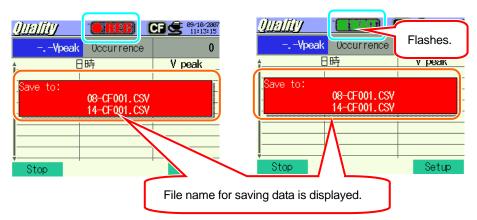
<Recording at event occurrence>

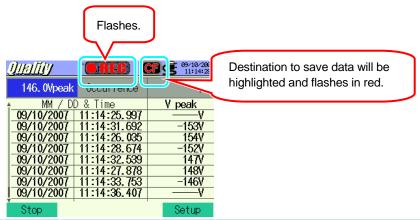
11.13 QUALITY KEW6310


11.3.3 Data Saving

Saving Procedure

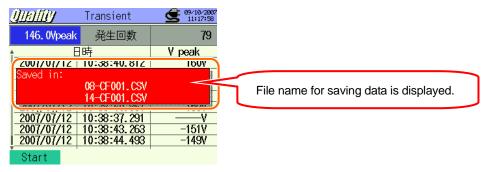
1 Press the F1 Key first.


Press the F4 Key to check Wiring, Measurement and Save Settings.


* Pressing down the F1 Key for 2 sec or more skips step 2 and start data saving.

For further details of Basic, Measurement and Save Settings, refer to "**Section 4 Settings**" in this manual. Terminals to be used in these measurements are VN and V1 only.

Manually start saving data, or stand-by screen (WAIT) appears if saving start date and time has been specified.



Saving starts and the LED status indicator lights up.

No setting change can be made during data saving. Press the F4 Key to check the settings.

- Press the F1 Key to stop measurement. (At measurements with Timer function activated, this Key activates in the same way.)
- Measurement will end and the LED status indicator goes off.

11.15 QUALITY KEW6310

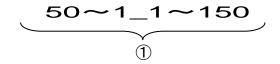
11.3.4 Limitations of saving

Refer to "6.3.2 Limitations of saving" in this manual.

11.3.5 Saving data

Settings

FILE ID	:	File name
VERSION	:	Version info
ID NUMBER	:	ID number
VOLT RANGE	:	Voltage Range
FEQUENCY	:	Frequency
TRANSIENT	:	Threshold for Transient
HYSTERESIS	:	Hysteresis
TRIGGER POINT	:	Trigger point
START	:	Save start time


Save data

File ID : 6310-08						
Saved	time & date	Max value	Data			
DATE	TIME	MAX	201 data pts			
yyyy/mm/dd h:mm:ss		(±)xxxx	xE±nn			
Year/Month/Day	Hour:Minute:second	Max value (Peak)	(±) value x 10 ^{±n}			

File ID : 6310-014*						
Saved time & date Elapsed time Instantaneous Average Max M					Min	
DATE	TIME	ELAPSED TIME	INST	AVG	MAX	MIN
yyyy/mm/dd h:mm:ss h:mm:ss				(±)x.xxxE±nn		•
Year/Month/Date	Hour:Min:Sec	Hour:Min:Sec		(±) value x 10 [±]	1	

^{*} Function available with ver2.00 or later.

Header of the saved data

When Trigger point has been set to Past: 50 and Next: 150:

① 201 data pts in total : Data No.

File format and name

File format is CSV format and file names are assigned automatically.

File Name : <u>08 — CF</u> <u>001</u> <u>. csv</u>

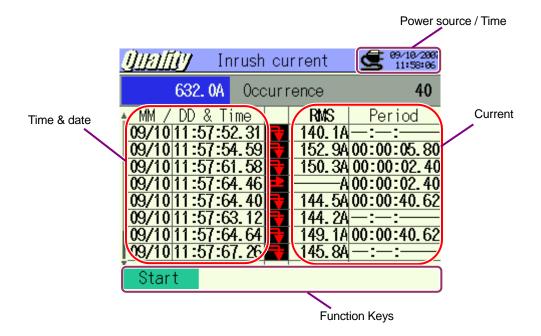
1 2 3 4

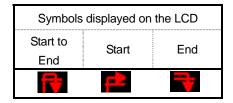
	1	Measuring item	08 : Transient measurement
	② Save in		CF : CF Card
L		oave III	ME : Internal Memory
	3	File number	001 ~ 999
ĺ	4	Saving format	CSV

File Name : <u>14 — CF 001 . csv</u>

1 2 3 4

1	Measuring item	14 : Voltage Interval data
② Save in		CF : CF Card
_	G	ME : Internal Memory
3	File number	001 ~ 999
4	Saving format	CSV

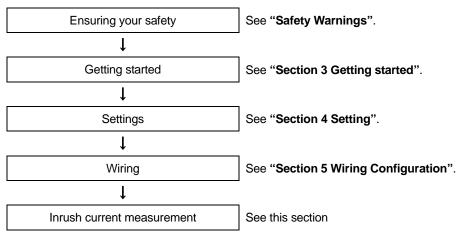

^{*} File Name: 14-CF001.CSV is used when saving data on ver2.00 or later.


11.17 QUALITY KEW6310

11.4 Inrush Current Measurement

11.4.1 Display Screen

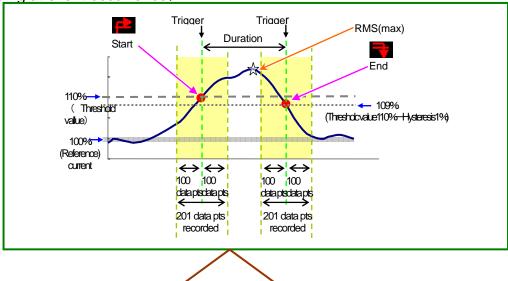
Select "Inrush current" and press the **ENTER** Key to view Inrush measurement screen.

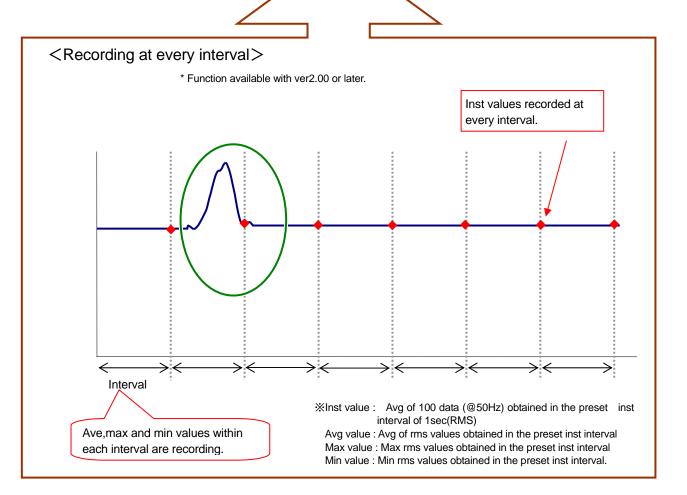


11.19 QUALITY KEW6310

11.4.2 Measuring Procedure

Steps for measurement


^{*} Readings are displayed right after the inrush current measurement starts.

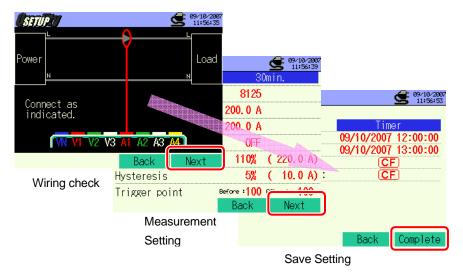

Measurement Setting	Save Setting
Interval*	Recording method
Clamp	Recording start
A Range	Recording termination
Reference current	Destination to save data
Filter	
Threshold	
Hysteresis	
Trigger point	

^{*} Function available with ver2.00 or later.

Timing of data recording

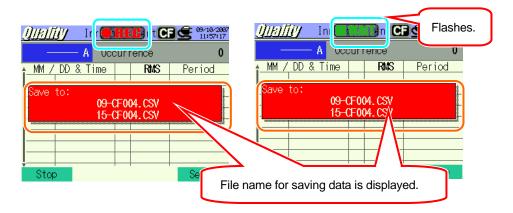
<Recording at event occurrence>

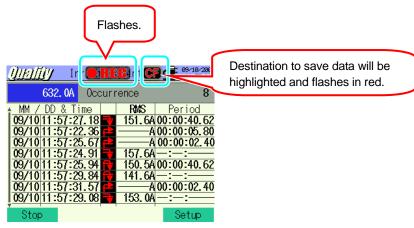
11.21 QUALITY KEW6310


11.4.3 Data Saving

Saving Procedure

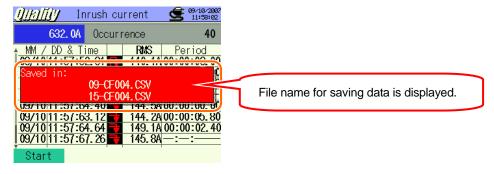
1 Press the F1 Key first.


Press the F4 Key to check Wiring, Measurement and Save Settings.


For further details of Basic, Measurement and Save Settings, refer to "**Section 4 Settings**" in this manual. Terminal to be used in this measurement is A1 only.

^{*} Pressing down the 1 Key for 2 sec or more skips step 2 and start data saving.

Manually start saving data, or stand-by screen (WAIT) appears if saving start date and time has been specified.



Saving starts and the LED status indicator lights up.

No setting change can be made during data saving. Press the 4 Key to check the settings.

- Press the F1 Key to stop measurement. (At measurements with Timer function activated, this Key activates in the same way.)
- Measurement will end and the LED status indicator goes off.

11.23 (QUALITY) KEW6310

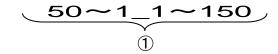
11.4.4 Limitations of saving

Refer to "6.3.2 Limitations of saving" in this manual.

11.4.5 Saving data

Settings

FILE ID	:	File name
VERSION	:	Version info
ID NUMBER	:	ID number
SENSOR TYPE	:	Model name of Clamp sensor
CURRENT RANGE	:	Current Range
CURRENT FILTER	:	Current Filter
FREQUENCY	:	Frequency
REFERENCE CURRENT	:	Reference current
INRUSH CURRENT	:	Threshold for Inrush current
HYSTERESIS	:	Hysteresis
TRIGGER POINT	:	Trigger point
START	:	Saving start time


Save data

	File ID : 6310-09							
Saved time & date Start / End				Dui	ration	Max / Min	Data	
DATE	TIME	I/O			DUR	ATION	MAX/MIN	201 data pts
yyyy/mm/dd	h:mm:ss	1	0	1/0	::	h:mm:ss.ss	(±)XX	xxxE±nn
Year/Month/Day	Hour:Min:sec	START	END	START to END	Start	End	Max / Min	(±) value x 10 ^{±n}

File ID : 6310-015*							
Saved time	e & date	Elapsed time	Instantaneous	Average	Max	Min	
DATE	TIME	ELAPSED TIME	INST	AVG	MAX	MIN	
yyyy/mm/dd hmm:ss hmm:ss				(±)x.xxxE	±nn		
Year/Month/Date	Hour:Min:Sec	Hour:Min:Sec		(±) value x ′	10 ^{±n}		

^{*} File ID: 6310-15 is used when saving data on ver2.00 or later.

Header of the saved data

When Trigger point has been set to Past: 50 and Next: 150:

201 data pts in total Data No.

File format and name

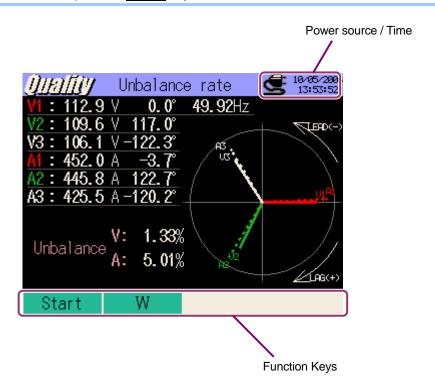
File format is CSV format and file names are assigned automatically.

File Name

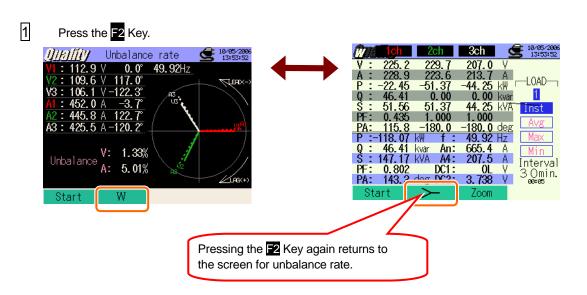
I	1	Measuring item	09 : Inrush current
	② Save in		CF : CF Card
L	E Gave II	Cavo III	ME : Internal Memory
	3	File number	001 ~ 999
Ī	4	Saving format	CSV

File Name

1	Measuring item	15 : Current Interval data
② Save in		CF : CF Card
	Ouvo III	ME : Internal Memory
3	File number	001 ~ 999
4	Saving format	CSV

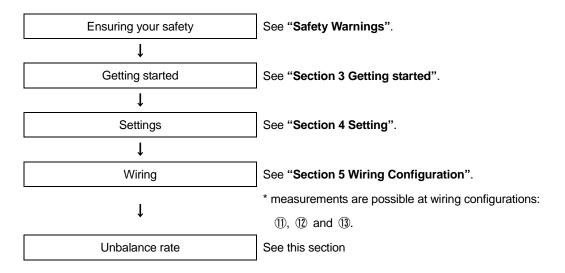

^{*} File ID: 6310-15 is used when saving data on ver2.00 or later.

11.25 (QUALITY) KEW6310


11.5 Unbalance rate measurement

11.5.1 Display Screen

Select "Unbalance Rate", and press the **ENTER** Key to view Unbalance rate measurement screen.

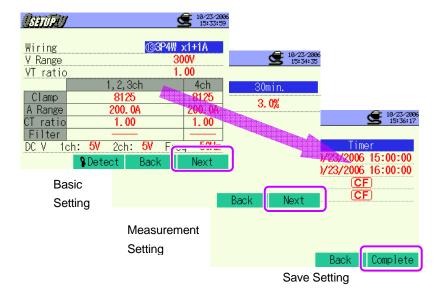

Switching screens

11.27 (QUALITY) KEW6310

11.5.2 Measuring Procedure

Steps for measurement

Basic Setting	Measurement Setting	Save Setting
Wiring configuration	Interval	Recording method
V Range	Output threshold	Recording start
VT Ratio		Recording termination
Clamp		Destination to save data
A Range		Destination to save screenshot
CT Ratio		
Filter		
DC V		
Frequency		

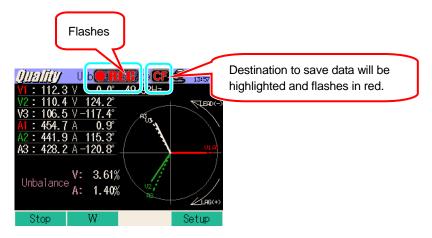

11.5.3 Data Saving

Saving Procedure

1 Press the F1 Key first.

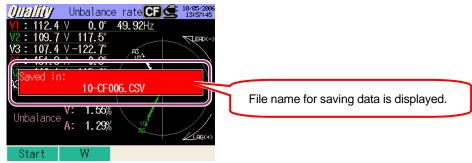
Press the F4 Key to check Basic, Measurement and Save Settings.

For further details of Basic, Measurement and Save Settings, refer to "Section 4 Settings" in this manual.


11.29 QUALITY) KEW6310

^{*} Pressing down the F1 Key for 2 sec or more skips step 2 and start data save.

Manually start saving data, or stand-by screen (WAIT) appears if saving start date and time has been specified.


Saving starts and the LED status indicator lights up.

Settings cannot be done during a data saving. Press the F4 Key to check the settings.

- Press the F1 Key to stop measurement.

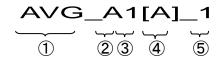
 (At measurements with Timer function activated, this Key activates in the same way.)
- Measurement will end and the LED status indicator goes off.

11.5.4 Limitations of saving

Refer to "6.3.2 Limitations of saving" in this manual.

11.5.5 Saving data

Settings


FILE ID	:	File name
VERSION	:	Version info
ID NUMBER	:	ID number
WIRING	:	Wiring Configuration
VOLT RANGE	:	Voltage Range
VT RATIO	:	VT Ratio
SENSOR TYPE	:	Model name of Clamp sensor
CURRENT RANGE	:	Current Range
CT RATIO	:	CT Ratio
CURRENT FILTER	:	Current Filter
DC RANGE	:	DC Range
FREQUENCY	:	Frequency
INTERVAL	:	Interval
START	:	Saving start time

Save data

File ID : 6310-10						
Saved time	Saved time & date Elapsed time		Instantaneous value	Average value	Max value	Min value
DATE	TIME	ELAPSED TIME	INST	AVG	MAX	MIN
yyyy/mm/dd	yyyy/mm/dd h:mm:ss h:mm:ss			(±)xxxxE±	n	
Year/Month/Day	Hour:Min:sec	Hour:Min:sec	(±) value x 10 ^{±n}			

11.31 (QUALITY) KEW6310

Header of the saved data

(1)	INIOT				
1	INST	:	Instantaneous value		
	AVG	:	Average value		
	MAX	:	Max value		
	MIN	:	Min value		
2	UV	:	Voltage unbalance rate		
	UA	:	Current unbalance rate		
	V	:	Voltage of each phase		
	А	:	Current of each phase		
	f	:	Frequency		
	Р	:	Active power		
	Q	:	Reactive power		
	S	:	Apparent power		
	PF	:	Power factor		
	PA	:	Phase angle		
	DC	:	Analogue input voltage		
3	CH number	:	* 1 ~ 4		
4		ι	Jnit		
5	System				

^{*} Saved data with no number at this space contaons the sum of the measured values

File format and name

KEW6310

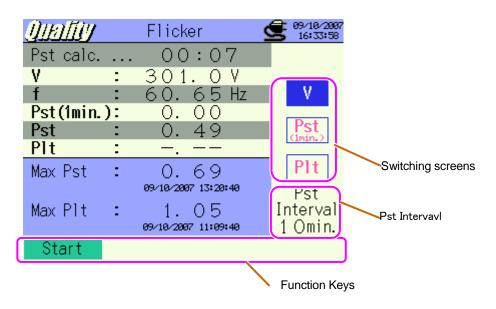
File format is CSV format and file names are assigned automatically.

File Name : <u>10 - CF 001 . csv</u>

1 2 3 4

	1	Measuring item	10 : Unbalance rate
			measurement
	② Save in	CF : CF Card	
		Cavo III	ME : Internal Memory
	3	File number	001 ~ 999
	4	Saving format	CSV

QUALITY) 11.32

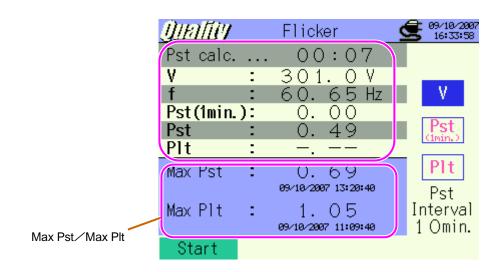

11.6 Flicker

* Flicker measurement function is only available with ver.2.00 or later.

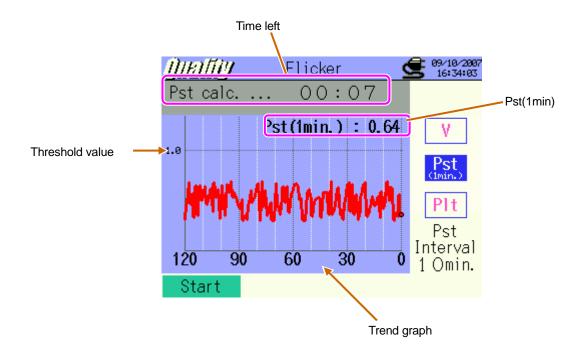
An optional voltage sensor KEW8325F is required for Flicker measurements.

11.6.1 Display Screen

Select "Flicker", and press the **ENTER** Key to view Flicker measurement screen.

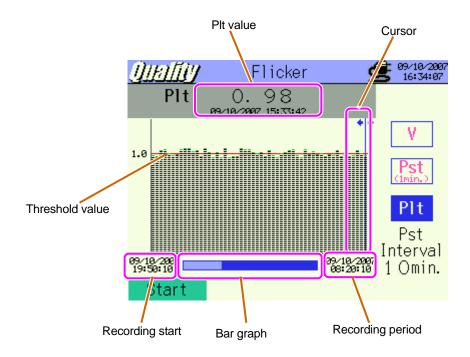

Switching screens

Press the **TCursor** Keys to switch screens.


11.33 QUALITY KEW6310

Measurement screen

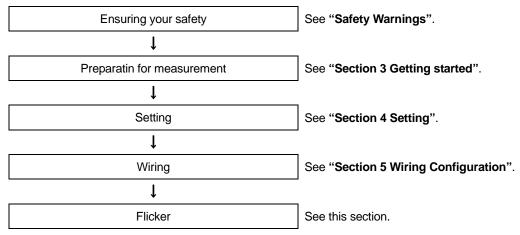
Displayed parameters	Details
Time left	Counted down until a Pst calculation completes.
V	Avg voltage in 1 sec.
f	Refreshed at every 1 min.
Pst(1min.)	Pst is displayed at every 1 min.lt takes time to calculate Pst.The value displayed here before a calculation completes is just for reference.
Pst	Pst is calculated and displayed at every 10 min.
Plt	Calculated cased on the latest 12 Pst values.(data in 2 hours)
Max Pst	Max Pst(short time intensity) through a beginning to the end of measurement is displayed. It is refreshed every time when the max values is exceeded.
Max Plt	Max Plt(long time intensity) through a beginning to the end of measurement is displayed. It is refreshed every time when the max value is exceeded.


Measurement screen

Displayed parameters	Details	
Pst(1min)	The latest Pst(1min.)	
Trend graph	Change of the latest 120 data Pst(1min.) can be observed.	

11.35 QUALITY KEW6310

Measurement screen

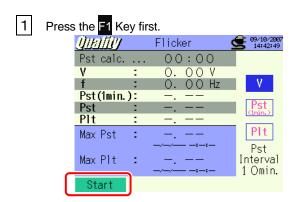


A long press of **Cursor** Keys changes pages.

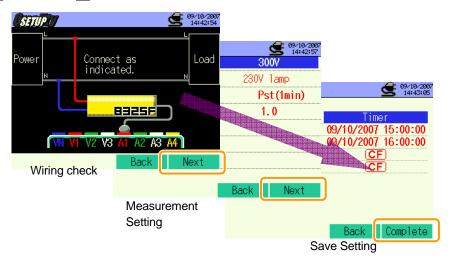
Displayed parameters	Details
Cursor	Press the Cursor Keys 👊 🕟 to move.
Plt value	Plt value with recorded date & time info at where the cursor locates.
Bar graph	White bar: percentage of whole pages.(including the hidden pages) Blue bar: percentage of the present displayed pages.
Recording start	Time and date when the 1 st recording started Time info of the oldest data in recent 1500 data pts is displayed when number of data exceeds 1500.
Recording period	Time and date of the latest recorded data is displayed.

11.6.2 Measuring procedure

Steps for measurement

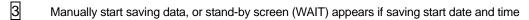

^{*} Preliminary measurement (for 10 sec) will be done automatically prior to Flicker measurement.

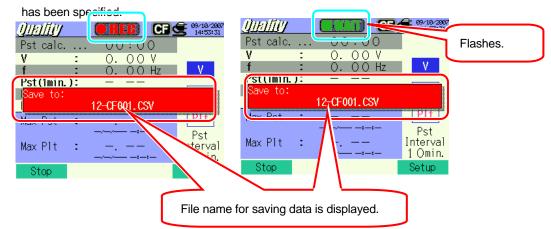
Measurement Setting	Save Setting
V Range	Recording method
Filter	Recording start
Output item	Recording termination
Output Threshold	Destination to save data
	Destination to save screenshot

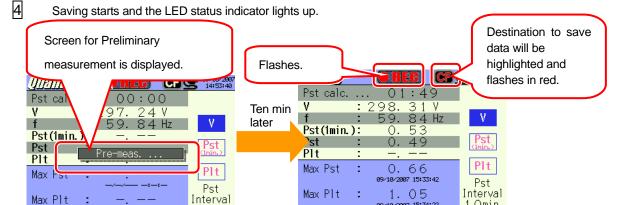

11.37 (QUALITY) KEW6310

11.6.3 Date Saving

Saving procedure




Press the F4 Key to check Wiring, Measurement and Save Settings.



*Pressing down the 1 Key for 2 sec or more skips step 2 and start data saving.

For further details of Basic, Measurement and Save Settings, refer to "Section 4 Settings" in this manual.

Stop

Setting cannot be done during a data saving. Press the 4 Key to check settings.

1 Omin.

LCD will be automatically blank in 1min when Flicker measurements start.

Key operation confirmation sound is disabled during measurements.

5 Press the F1 Key to stop measurement.

Stop

(At measurements with Timer function activated, this Key activates in the same way.)

6 Measurement will end and the LED status indicator goes off

09/10/2007 15:34:22

1 Omin.

11.39 (QUALITY) KEW6310

11.6.4 Limitations of saving

Refer to "6.3.2 Limitations of saving" in this manual.

11.6.5 Saving data

Settings

FILE ID	:	File name
VERSION	:	Version info
PLACE	:	Measuring place signal
VOLT RANGE	:	Voltage Range
FILTER	:	Filter
Pst_INTERVAL	:	Pst Interval
Pst_CAL_NUMBER	:	Number of Pst used for Plt calculation
START	:	Save start time

Save data

	File ID6310-12								
				Voltage					
Saved tii	me &date	Elapsed time	Frequency	Avg	Max	Min	Pst	Pst	Plt
DATE	TIME	ELAPSED TIME	f	AVG_V	MAX_V	MIN_V	Pst (1min)	Pst	Plt
yyyy/mm/dd	h:mm:ss	h : mm : ss	(\pm) x. xxxE \pm nn (\pm) x. xxxxxE \pm nn (\pm) x. xxxE \pm r			nn			
Year/ month/ date	Hour:min: sec	Hour : min : sec	(±)value ×10 ^{±n}						

^{*} Data is saved per min, but Pst is saved at every 10 min and Plt is saved at every 10 min in 2 hours later.

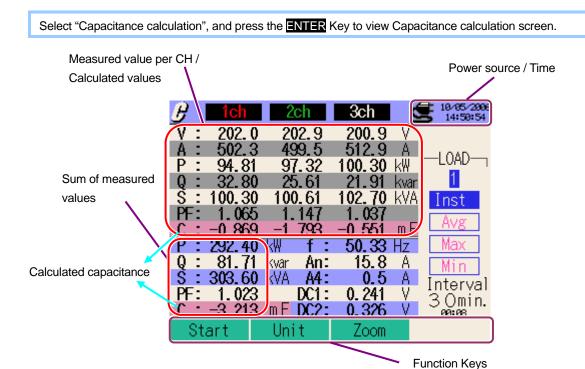
Header of the saved data

f	:	Fresuency
AVG_V	:	Averaged voltage
MAX_V	:	Max voltage
MIN_V	:	Min voltage
		severity evaluated
Pst(1min)	:	over a short period (1
		min)
Pst(1)		severity evaluated
F51(1)	•	over a short period
Plt		severity evaluated
ΓIL	•	over a long period

File format and name

File format is CSV format and file names are assigned automatically.

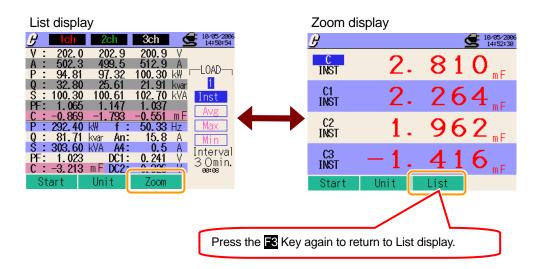
File name : $\underline{12} - \underline{CF} \underline{001} \underline{.} \underline{csv}$


1 2 3 4

1	Measuring item	12 : Flicker
2	Save in	CF : CF card
		ME : Internal memory
3	File number	001~999
4	Saving format	CSV

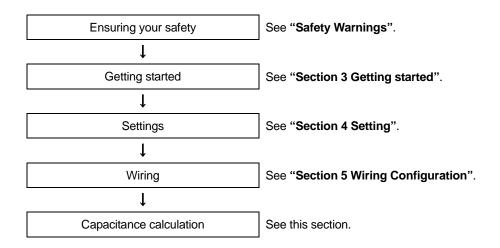
11.41 (QUALITY) KEW6310

11.7 Capacitance Calculation-Sizing of capacitor banks for Power factor correction (PFC)


11.7.1 Display Screen

11.43 QUALITY KEW6310

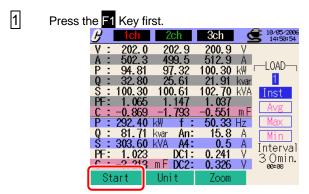
Zooming


1 Press the F3 Key.

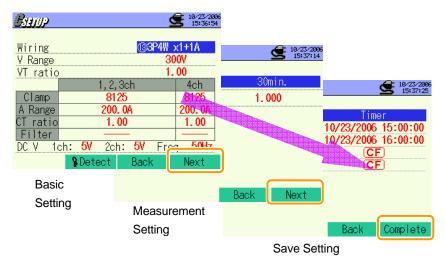
QUALITY 11.44

11.7.2 Measuring procedure

Steps for measurement

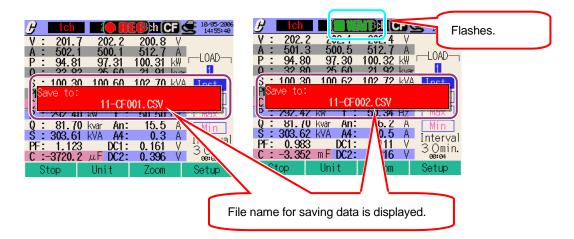

Basic Setting	Measurement Setting	Save Setting
Wiring configuration	Interval	Recording method
V Range	Target power factor	Recording start
VT Ratio		Recording termination
Clamp		Destination to save data
A Range		Destination to save screenshot
CT Ratio		
Filter		
DC V		
Frequency		

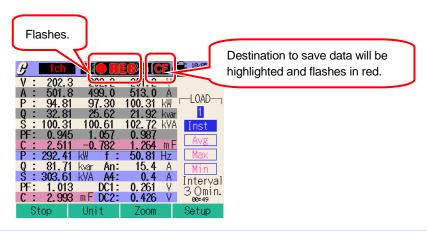
11.45 (QUALITY) KEW6310


11.7.3 Data Saving

Saving Procedure

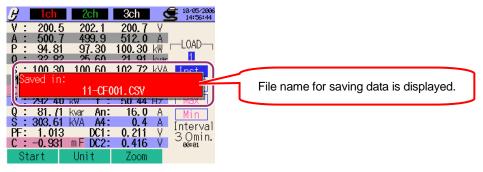
armig : 1000aaro


Press the F4 Key to check Basic, Measurement and Save Settings.


For further details of Basic, Measurement and Save Settings, refer to "Section 4 Settings" in this manual.

^{*} Pressing down the F1 Key for 2 sec or more skips step 2 and start data saving.

Manually start saving data, or stand-by screen (WAIT) appears if saving start date and time has been specified.



Saving starts and the LED status indicator lights up.

Setting cannot be done during a data saving. Press the F4 Key to check settings.

- 5 Press the F1 Key to stop measurement.
 - (At measurements with Timer function activated, this Key activates in the same way.)
- Measurement will end and the LED status indicator goes off

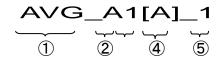
11.47 (QUALITY) KEW6310

11.7.4 Limitations of saving

Refer to "6.3.2 Limitations of saving" in this manual.

11.7.5 Saving data

Settings


FILE ID	:	File name
VERSION	:	Version info
ID NUMBER	:	ID number
WIRING	:	Wiring Configuration
VOLT RANGE	:	Voltage Range
VT RATIO	:	VT Ratio
SENSOR TYPE	:	Model name of Clamp sensor
CURRENT RANGE	:	Current Range
CT RATIO	:	CT Ratio
CURRENT FILTER	:	Current Filter
DC RANGE	:	DC Range
FREQUENCY	:	Frequency
INTERVAL	:	Interval
C_Unit	:	Capacitance unit
Interval	:	Interval
START	:	Save start time

Save data

File ID : 6310-11							
Saved time & date		Elapsed time Instantaneous value		Average value	Max value	Min value	
DATE	TIME	ELAPSED TIME	INST	AVG	MAX	MIN	
yyyy/mm/dd	h:mm:ss	h:mm:ss	(±)xxxxE±nn				
Year/Month/Day	Hour:Min:sec	Hour:Min:sec	(±) value x 10 ^{±n}				

KEW6310 QUALITY 11.48

Header of the saved data

INST	:	Instantaneous value	
AVG	:	Average value	
MAX	:	Max value	
MIN	:	Min value	
V	:	Voltage of each phase	
Α	:	Current of each phase	
f	:	Frequency	
Р	:	Active power	
Q	:	Reactive power	
S	:	Apparent power	
PF	:	Power factor	
С	:	Capacitance	
DC	:	Analogue input voltage	
CH number	:	* 1 ~ 4	
	U	Init	
System			
	AVG MAX MIN V A f P Q S PF C DC	AVG : MAX : MIN : A : A : A : A : A : A : A : A : A :	

^{*} Saved data with no number at this space contaons the sum of the measured values

File format and name

File format is CSV format and file names are assigned automatically.

File Name : <u>11</u> — <u>CF</u> <u>001</u> <u>. csv</u>

1	Measuring item	11 : Capacitance calculation		
2	Save in	CF : CF Card		
J)	Ouve III	ME : Internal Memory		
3	File number	001 ~ 999		
4	Saving format	CSV		

11.49 QUALITY KEW6310

KEW6310 QUALITY 11.50

12. CF card / Internal memory

12.1 Instrument and CF card / Internal memory

Measurement data can be saved in CF card and the internal memory of the instrument.

CF card

Available capacity	32MB/ 64MB/ 128MB/ 256MB/ 512MB/ 1GB	
Slot type	Type I / II	
Format	FAT16	

^{* (}CF card with more or less capacity cannot be used.)

Capacity	32MB	64MB	128MB	256MB	512MB	1GB
SanDisk Corp.	SDCFB-32	SDCFB-64	SDCFB-128	SDCFB-256	SDCFB-512	SDCFG-1
Adtec co., Ltd.	AD-CFG32	AD-CFG64	AD-CFG128	AD-CFG256		AD-CFX 40T1G
BUFFALO INC.			RCF-X128MY	RCF-X256MY		RCF-X1GY

^{*} CF Card with more or less capacity other than listed above cannot be used with this instrument.

Internal memory

Memory type	Flash memory
Storage capacity	1.8MB
Data communication	USB communication
method	(see "Section 13 Communication / Supplied software" in this manual)

12.1 KEW6310

^{*} Company name and model name are the trademark or the registered trademark.

^{*} A Compact Flash Card (CF card) may not operate properly even if any of the above are used due to manufacture's specification change, etc. The use of supplied CF Card or optional Kyoritsu CF Card is recommended.

Max number of data / Estimated time

Destination to save data		CF Card					Internal Memory	
Capacity		32MB	64MB	128MB	256MB	512MB	1GB	1.8MB
la stantana a con colora	1sec	15H	1D	2D	5D	10D	20D	7min
Instantaneous value measurement	1min	10D	20D	1M	2M	5M	10M	2H
measurement	30min	10M	1Y	Over 1Y	Over 1Y	Over 1Y	Over 1Y	2D
lata matica calca	1sec	6H	13H	1D	2D	4D	8D	3min
Integration value measurement	1min	7D	15D	1M	2M	4M	8M	1H
measurement	30min	7M	1Y	Over 1Y	Over 1Y	Over 1Y	Over 1Y	1D
	1sec	4H	8H	17H	1D	2D	5D	2min
DEMAND measurement	1min	6D	12D	24D	1M	3M	6M	1H
	30min	6M	1Y	Over 1Y	Over 1Y	Over 1Y	Over 1Y	1D
	10sec	1D	3D	7D	14D	28D	1M	20min
WAVE Range	1min	10D	21D	1M	2M	5M	11M	2H
	30min	10M	1Y	Over 1Y	Over 1Y	Over 1Y	Over 1Y	2D
	15sec	3D	7D	15D	1M	2M	4M	44min
Harmonic anaysis	1min	15D	1M	2M	4M	8M	1年	2H
	30min	1Y	Over 1Y	Over 1Y	Over 1Y	Over 1Y	Over 1Y	3D
	1sec	2D	5D	11D	22D	1M	2M	32min
Swell / Dip / Int measurement	1min	5M	11M	1Y	Over 1Y	Over 1Y	Over 1Y	1D
	30min	Over 1Y	Over 1Y	Over 1Y	Over 1Y	Over 1Y	Over 1Y	1M
	1sec	3D	6D	12D	24D	1M	3M	35min
Transient measurement	1min	6M	1Y	Over 1Y	Over 1Y	Over 1Y	Over 1Y	1D
	30min	Over 1Y	Over 1Y	Over 1Y	Over 1Y	Over 1Y	Over 1Y	1M
	1sec	2D	5D	11D	22D	1M	2M	32min
Inrush Current measurement	1min	5M	11M	1Y	Over 1Y	Over 1Y	Over 1Y	1D
	30min	Over 1Y	Over 1Y	Over 1Y	Over 1Y	Over 1Y	Over 1Y	1M
	1sec	21H	1D	3D	7D	14D	27D	10min
Unbalance Rate	1min	14D	29D	1M	3M	7M	1Y	2H
	30min	1Y	Over 1Y	Over 1Y	Over 1Y	Over 1Y	Over 1Y	3D
Flicker*1	1min	7M	1Y	Over 1Y	Over 1Y	Over 1Y	Over 1Y	1D
	1sec	15H	1D	2D	5D	10D	19D	7min
Capacitance calculation	1min	10D	20D	1M	2M	5M	10M	1H
	30min	10M	1Y	Over 1Y	Over 1Y	Over 1Y	Over 1Y	2D
Max number of file	Measure	ment data fil	e (CSV)					6
		file (BMP)			į	512		7
	· ·	ation file (KA	S)		1			20

^{*} In case that no file exist in the CF card or the Internal memory.

where : H= hour(s), D=day(s), M=month(s), Y=year(s)

Numbers and time listed above are the minimum ones.

KEW6310 12.2

^{*1} Assumed one event occur per minute and calculated.

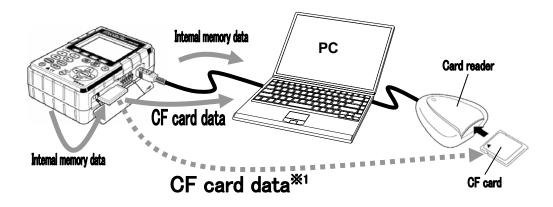
^{*} Flicker measurement function is only available with ver.2.00 or later.

Be sure to verify proper operation of CF card on a well-known hardware.

As to the manipulation of the FC card, please refer to the instruction manual attached to the card.

The available recoding period varies depending on each interval.

In order to save the data without any problem, make sure to delete the file other than the data measured with this instrument in the CF card.


Use of a Card reader or CF card adaptor is required to read the data in a CF card.

Data transfer

Data in the CF card or internal memory can be transferred to a PC via a USB lead or a CF card reader.

	Transfer to PC via:			
	USB	Card reader		
CF card data (file)	Δ*1	0		
Internal memory data (file)	0	*2		

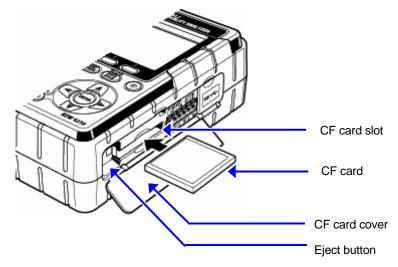
- *1 : It is reccomended to transfer the data with big size by a use of CF card reader since trasfer of such data via USB takes time. (transfer time : approx 4MB/ hour)
- *2 : Data in the internal memory can be tranferred to a CF card.
- * As to the manipulation of the CF card, please refer to the instruction manual attached to the card.
- * In order to save the data without any problem, make sure to delete the file other than the data measured with this instrument in the CF card.

12.3 KEW6310

12.2 Placing / removing the CF card

- * Do not place or remove a CF card while CF card is being accessed. ([CF]) flashes while CF card is being accessed.) Otherwise saved data in the card or the instrument may be damaged.
- * Remove the CF card when carrying the instrument.

How to place:


1

Open the CF card cover.

Turn the CF card obverse side up, and firmly place it in the CF card connector. Then the Eject button is popped-out.

3

After inserting the card, close the CF card cover.

The instrument automatically detects the CF card when the card is inserted.

When placing the CF card in the connector, pay attention to the orientation of the arrow mark indicated on the obverse side of the CF card. The available recoding period varies depending on each interval. The instrument automatically detects the CF card when the card is inserted.

12.4 KEW6310

How to remove:

Open the CF card cover.
The card can be removed

The card can be removed by pushing the Eject button beside the card connector. The Eject button is being pressed down.

Remove the card, and then close the CF card cover.

12.5 KEW6310

12.3 CF card and Internal memory

Formatting CF card

Format the CF card to be used when using it at the first time.

* Only the CF cards formatted via FAT system can be used with this instrument.

1 Confirm that the instrument is off, and place the CF card.

Power on the instrument.

Follow the procedure described at "Formatting CF Card" in Section 4 and format the card.

Deleting of files in CF card

Follow the procedure described at "Deleting the data in CF Card" in Section 4 and delete the files.

Formatting Internal memory

Follow the procedure described at "Formatting Internal memory" in Section 4 and format the memory.

Deleting of files in Internal memory

Follow the procedure described at "Deleting the data in Internal memory" in Section 4 and delete the files.

Saving data

Measurement data can be saved to the CF card or the internal memory in CSV format, which can be edited on spreadsheet software. File number is given automatically.

KEW6310 12.6

File format and name

Measurement file (CSV file)

01-CF001.CSV

1 2 3 4 5

Ě							
	Function identification code						
		01	W Range Measurement data				
		02	Wh Range Measurement data				
		03	DEMAND Range Measurement data				
		04	Waveform Measurement data				
		05	Vector Measurement data				
		06	Harmonics Measurement data				
		07	Swell/ Dip/ Int Measurement data				
		08	Transient Measurement data				
		09	Inrush current Measurement data				
		10	Unbalance rate Measurement data				
		11	PFC calculation data				
	② File identification code						
	_		Save file				
		В	Backup file				
	3 D	estination ide	ntification code				
		CF	CF card				
		ME	Internal memory				
	④ File number						
	001 ~ Number increases one by one after every recor						
	999 It restores to 001 after system reset.						
	⑤ Ex	rtension					
		CSV	Fixed (capital letters)				
			-				

12.7 KEW6310

PS-CF001.BMP

1	2	3	4

① Print Screen			
	PS	Fixed	
② Des	tination ident	ification code	
	CF	CF card	
	ME Internal memory		
③ File number			
001 ~		Number increases one by one after every recording.	
	999 It restores to 001 after system reset.		
Extension			
	ВМР	Fixed (capital letters)	

Configuration file (KAS file)

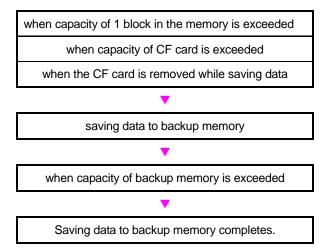
ME000123.KAS

1	2	3

① Destination identification code		
	CF CF card	
	ME	Internal memory
② File number		
0001 ~ Number in		Number increases one by one after every recording.
	9999 It restores to 0001 after system reset.	
③ Extension		
KAS Fixed (capital letters)		Fixed (capital letters)

Mark displayed on the LCD		MEM mark flashes while saving data to the internal memory.	
FULL		Displays when saved data exceeds the save capacitance.	
		Further data saving cannot be done while this mark is being	
		displayed. (Measurement continues and readings are refreshed	
		accordingly, but the data isn't saved.)	

Data can be saved in the internal memory with a CF card inserted in the instrument.


12.8

12.4 Backup memory KEW6310

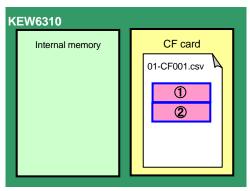
12.4 Backup memory

The Internal memory works as a backup memory when a CF card has been selected as a destination for saving data. If writing data to the CF card fails during saving, data will be written in the backup memory instead.

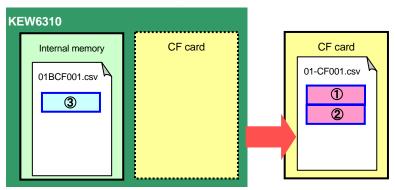
Using Backup memory

Data saved in the backup memory is kept after powering off the instrument, however, it will be overwritten every time starting backup function.

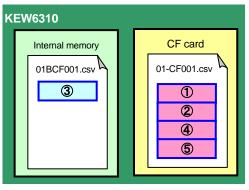
12.9 KEW6310


KEW6310 12.4 Backup memory

Data processing in Backup memory

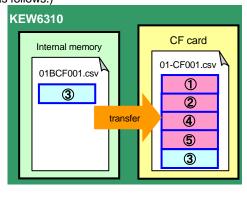

One CF card is placed/ removed during saving data;

Saving


① A file is created in the CF card, when CF card is selected as a destination for saving data, and measurement data is saved to the CF card.

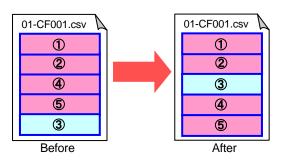
② A backup file is created in the internal memory when a CF card is removed at saving data. Further data is saved to the internal memory.

3 When inserting the CF card again during a data saving, further data will be saved to the last available space in CF card. (behind the ①& ②).



KEW6310 12.10

12.4 Backup memory KEW6310


Saving completes

Backup files in the internal memory are automatically transferred to the last available space in a CF card. (Time-series is as follows.)

Download completes

Use of supplied software [KEW PQA MASTER] enables to sort files in time-series.

For further details, please refer to the HELP for "KEW PQA MASTER".

12.11 KEW6310

KEW6310 12.4 Backup memory

KEW6310 12.12

13. Communication function/ Interface software

Interface

This instrument is equipped with USB interface.

Communication method: USB Ver1.1

Followings can be done by USB communication:

- * Downloading a file in the internal memory of the instrument to PC
- * Making settings of the items on **SET UP** Range via PC.

Software

KEW PQA MASTER (supplied CD-ROM)

System requirements

* OS (Operation system)

Windows 2000/ XP (CPU: Pentium III 500MHz or higher)

* Memory

128Mbyte or more

* Display

Resolution 1024 x 768 dots, 65536 colors or more

* Hard-disk space required 100Mbyte or more

Trademark

- * Windows® and Microsoft® Excel are the registered trademark of Microsoft in the United States.
- * Pentium is a registered trademark of Intel in the United States.

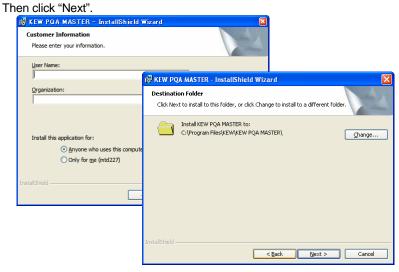
13.1 KEW6310

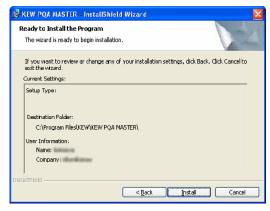
KEW6310 13.1 Software installation

13.1 Software Installation (KEW PQA MASTER)

- (1) Followings shall be checked before installing "KEW PQA MASTER".
 - * To prepare your system to install this software, please close all open programs.
 - * Be sure NOT to connect the instrument with USB until install is completed.
 - * On Windows2000/ XP, install shall be done with administrative right.
- (2) Insert the CD "KEW PQA MASTER" in your PC's CD-ROM drive. Then, KEW PQA MASTER installer sets up automatically. When it doesn't run automatically, double click the "setup_eng.exe".

Then, following window appears. Click "Next".


(3) Read through and understand the License Agreement, and check "I accept....".
Then click "Next".

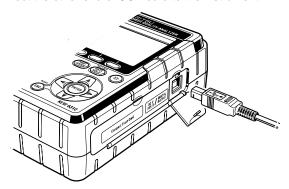

KEW6310 13.2

13.1 Software installation KEW6310

(4) Enter the user information and specify the location to where install the software.

(5) Confirm the information on install, and click "Install" to start installing.

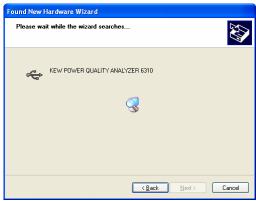
(6) Click "Finish" when install completes.


NOTE

* If you need to remove "KEW PQA MASTER", use the "Add/Remove Programs" tool in Control Panel.

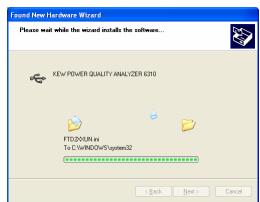
13.3 KEW6310

13.2 USB driver installation

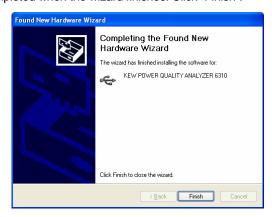

- (1) Connect one end of a USB cord to your PC.
- (2) Connect the other end of USB cord to the instrument.

- (3) When your PC and the instrument are connected properly, install starts.
- (4) Click "Install the software automatically (recommended)", and insert the "KEW PQA MASTER" in your PC's CD-ROM drive. Then Click "Next".

* When a device driver is not found automatically, click "kew_power.inf" of KEW PQA MASTER, which Is in the CD-ROM drive.



KEW6310 13.4



In case that following window appears on Windows XP, click "Continue anyway". (It is an operation check, and no problem happens if install is continued.)

(5) Install is completed when the wizard finishes. Click "Finish".

NOTE

* When install of the driver is interrupted and reinstall cannot be done, or when install cannot be done properly, refer to "13.4 USB driver un-installation" in this manual..

13.5 KEW6310

13.3 Starting "KEW PQA MASTER"

Start and quit

Start the software by; 1) clicking the icon for [KEW PQA MASTER] on the desktop, or 2) clicking [Start] \rightarrow [Program] \rightarrow [KEW] \rightarrow [KEW PQA MASTER]. Then the main window for "KEW PQA MASTER" appears. Click [Data download] or [Setup]. Clicking [Quit] or [x] box at the upper right of the window quits the program.

• [Download]

Downloads the file to the internal memory of the instrument.

When data has recorded in the internal memory of the instrument, it can be saved to PC in CSV format. The saved data can be loaded in Microsoft ® Excel, and be edited and printed.

(CSV format : is a comma-separated text data, and can be loaded in Microsoft ® Excel.)

[Setup]

Makes setting for instrument.

Can make settings for the items in setup mode and confirm the present settings on your PC. Moreover, settings can be saved/ recalled as a "configuration file (.kps)". So the settings can be changed easily via a PC.

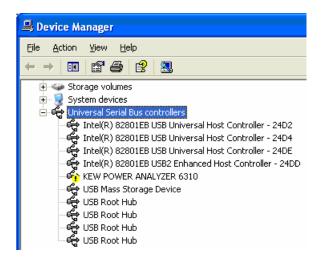
* When using this instrument for the first time, time should be set.

• [Data analysis]

Analyzes measurement data (CSV format data).

[Instrument Reset]

Restores setting for the instrument to default.

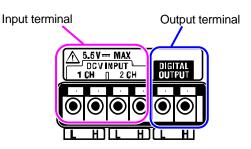

Parameters in setup mode are reset.

KEW6310 13.6

13.4 USB driver un-installation

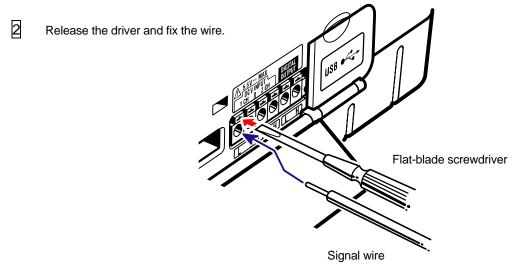
When install of the USB driver is interrupted and reinstall cannot be done, follow the procedure below and delete the existing USB driver. Then install it again.

- (1) Connect a PC and the instrument with a USB cord.
- (2) Click [Control Panel] in the Start menu at the lower left on the Windows screen.
- (3) Click [System] in the control panel.
- (4) Then click [Device Manager].
- (5) Right click on [KEW POWER QUALITY ANALYZER 6310" in the "Universal Serial Bus controllers"
- (6) Click [Uninstall] and uninstall the USB driver.


- (7) Remove the USB cord connecting your PC and the instrument once, and connect them again.
- (8) When "Found New Hardware Wizard" window appears, follow the procedure described at "13-2 USB driver installation" and install the driver.

13.7 KEW6310

KEW6310 13.8


14. Other functions

14.1 Input/ Output terminals

Connection

Press the recutangular protrusion above a terminal with a flar-blade screw driver, and insert a signal wire.

Connect wires to the proper terminals.

Wires of following dimensions can be used.

Suitable wire: single-wire Φ1.2 (AWG16), twisted wire 1.25mm² (AWG16),

Strand size Ф 0.18mm or more

Usable wire : single-wire Φ 0.4 ~ 1.2 (AWG26 ~ 16), twisted wire 0.2 ~ 1.25mm² (AWG24 ~ 16)

Strand size Ф 0.18mm or more

Standard length of bare wire 11mm

14.1 KEW6310

[Input terminal]

Capable of measuring and recording DC voltage signals.

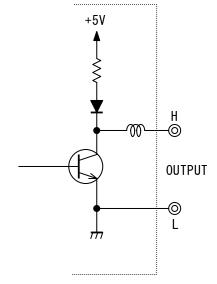
Number of Ch: 2ch

Input resistance : approx $225k\Omega$

Roots of the L terminals for each Ch are integrated. Never connect inputs with various grand levels to the terminal at the same time.

[Output terminal]

Capable of generating outputs when events occur during measurements below.


Measurement menu	Conditions for Output : Lo	Remarks
Demand	(Predicted value) > (Target value)	
Harmonic	exceeding preset allowable range	Lo output; when an alowable range is exceeded at any Ch.
Swell/ Dip/ Int/ Transient/ Inrush	new event is added and displayed on the LCD	Lo is kept for 1 sec, Hi is restored
Unbalance rate	exceeding preset threshold	

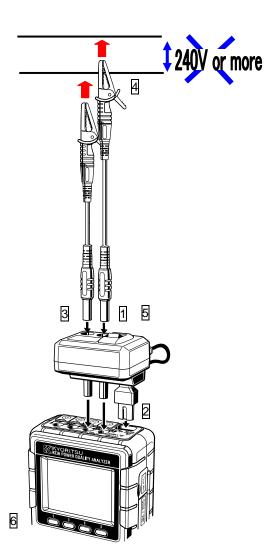
Output format : Open collector output

Max input: 30V, 50mA, 200mW

Output voltage: Hi - 4 ~ 5V

 $Lo - 0 \sim 1V$

14.2 KEW6310


14.2 Getting power from measured lines

When there is difficulties in getting power from an outlet, KEW6310 operates with powers on the measured line by using Voltage test leads with Power supply adapter MODEL8312.

Connect the Adapter according to following procedure.

- 1 Confirm that the Adapter is off.
- Connect the Plug of the Adapter to VN and V1 terminals on KEW6310/6300 and Power Plug to the Power connector respectively.
- 3 Connect the Voltage test leads to VN and V1 terminals of the Adapter.
- Connect the Alligator clips of the Voltage test leads to the circuit under test.
- 5 Power on the Adapter.
- 6 Power on KEW6310/6300.
- * Reversed procedure is applied to remove the Adapter from KEW6310/ 6300.

Fuse rating: AC500mA/ 600V, Fast acting, Φ6.3 x 32mm

For further details, refer to the Instruction manual for MODEL 8312.

14.3 KEW6310

KEW6310 14.3 Auto-ranging

14.3 Auto-ranging

Auto-ranging function is available at W, Wh, DEMAND and WAVE Ranges. Current values in wide range can be measured with this function; it is helpful when load capacitances vary dramatically according to day and time.

- Range : 2-range-auto/ max and min range of each Clamp sensor
- Range shift to upper one when crest values equal to twice as much as F.S (sine wave) at min range is detected.

Accurate values may not be obtained when substantial fluctuations in 1 sec.

14.4 Operation at AC power interruption

When an AC power supply is interrupted during recording, KEW6310 operates as follows.

- Power supply: restores to battery when batteries have been installed
- Measurement data: saved until the last interval before an interruption
- Operation after interruption: recording restarts with preset settings if a power is interrupted during
 recording. In this case, occurrence of interruption is recorded with time and date information. (STOP)
 Restoration is also recorded as well. (START)

Instrument doesn't power on again automatically when a power interruption occurs and restores other than recording period.

Files in CF card or Internal memory may be destroyed if an AC power is interrupted while accessing to them. Use of AC power supply and batteries at the same time is recommended if power interruptions are concerned.

KEW6310 14.4

15.1 Troubleshooting KEW6310

15. Troubleshooting

15.1 General troubleshooting

When defect or breakdown of the instrument is suspected, check the following points first. If your problem isn't listed in this section, contact your local Kyoritsu distributor.

Symptom	Check
(1) Instrument cannot be	operating with an AC power supply
powered on.	- Power cord is connected firmly and properly?
	- No break in the Power cord?
	- Supply voltage is within the allowable range?
	operating with batteries
	- Batteries are installed with observing correct polarity?
	- Ni-HM batteries are full-charged?
	- Alkaline batteries are not exhausted?
(2) Error message "Hardwar	e error" • Power off the instrument, and power it on again. There is no problem
appears when powering of	on the when an error message doesn't appear; the internal circuit may be
instrument.	damaged when the same error message appears. Contact your local
	Kyoritsu distributor.
	 In case that NG is found only on RTC item, it means internal coin
	battery for backup is exhausted. (Date and time may be wrong every
	time when powering off the instrument) Contact your local Kyoritsu
	distributor. Backup battery life is approx 5 years.
(3) Any key doesn't work.	Key lock function is inactivated?
	Check the effective Keys on each Range.
(4) Readings are not stable of	Confirm that:
inaccurate	* Voltage test leads and clamp sensors are connected properly.
	* Setting for the instrument and the selected wiring configuration are
	appropriate.
	* Proper sensors are used with proper settings.
	* There is no break in the voltage test leads.
	* Input signal is not interfered.
	* Strong electric magnetic field does not exist in close proximity.
	* Use environment meets the specification of this instrument.
(5) Incapable of saving data t	• Check the number of files in the memory.
internal memory	Check that the destination for saving data is set to internal memory.

15.1 KEW6310

Symptom	Check
(6) Data cannot be saved in a	CF card is inserted correctly?
CF card.	CF card has been formatted?
	Is there available space in a CF card?
	Destination for saving data is set to "CF card"?
	Check the max number of files or capacity of CF card.
	Confirm that the operation of CF card to be used is checked.
	Verify the proper operation of CF card on other hardware.
(7) Download and setting cannot be	Confirm that:
done via USB communication.	* instrument and PC are connected with USB cord correctly,
	* SET UP Range is selected, and
	* device are recognized on KEW PQA MASTER. A USB driver may not
	be installed correctly if no device is recognized. See Section 13.

15.2 Error messages and actions

Error messages may appear on the LCD while using the instrument. Followings are the messages displayed and corresponding actions.

Message	Detail & Action
" Cannot recognize. "	A Clamp sensor is connected properly to the Current input terminal displayed with "?" mark on the LCD? press the "Detect" Key again or setting should be done manually. See "4.2.1 Basic setting (Setting for Clamp sensor).
" Improper sensor is connected."	Check the connected sensor again, and press the "Detect" Key again. Leakage clamp sensors cannot be used at the Ch measuring power. See "4.2.1 Basic setting (Setting for Clamp sensor).
" No CF card "	Check the CF card is inserted correctly. See "4.2.3 Save setting".
" Format failed "	Confirm a CF card is inserted correctly, and format the card again. See "4.2.3 Save setting (Formatting CF card)".
"Some files are left undeleted."	Try to delete the files again. See "4.2.3 Save setting".
" Unformatted CF card "	A CF card isn't FAT16 format. It should be formatted. See "4.2.3 Save setting (Formatting CF card)".
"Some files were not transferred."	Try to transfer the data again. See "4.2.3 Save setting (Data transfer)".
" No processable file "	There is no file to be deleted or transferred in the memory. See "4.2.3 Save setting".
" Internal memory isn't formatted. "	Format the internal memory. See "4.2.3 Save setting (Formatting Internal memory)".
" No save space "	Unnecessary data should be deleted or format is required. See "4.2.3 Save setting".

- continued on the next page -

KEW6310 15.2

Message	Detail & Action
" Max number of file is exceeded."	Unnecessary data should be deleted or format is required. See "4.2.3 Save setting".
"No space in CF card; start recording	Remove the CF card and make available space, and then insert
in internal memory."	the card again. See "4.2.3 Save setting".
"Available space in CF card is small."	Insert another CF card, or delete the data or format the card.
	See "4.2.3 Save setting".
" No external power supply"	Check an AC power supply is connected or not. See "3.2.2 AC Power supply".
" Set the Battery select SW to	Set the selector switch to [RECHARGEABLE] position.
[RE-CHARGEABLE]. "	See "3.2.1 Battery".
" Cannot be deleted "	Try to delete the files again. See "4.2.3 Save setting".
" Cannot be transferred."	Try to transfer the data again. See "4.2.3 Save setting (Data transfer)".
"Failed to access CF card"	Check a CF card is inserted correctly, and file format is FAT16.
" Failed to save screenshot "	Memory where to save data has max number of files. Delete
	unnecessary data and take screenshot again.

15.3 KEW6310

KEW6310 15.4

16. Specification

16.1 General specification

Location for use : In door use, Altitude up to 2000m
Temperature & humidity range : 23°C±5°C, Relative humidity 85% or less

(guaranteed accuracy) (no condensation)

Operating Temperature & : 0°C±40°C, Relative humidity 85% or less

humidity range (no condensation)

Storage Temperature & : -20°C±60°C, Relative humidity 85% or less

humidity range (no condensation)

Measured line : single-phase 2-wire (1ch ~ 4ch), single-phase 3-wire (1ch ~ 2ch), three-phase

3-wire (1ch ~ 2ch), three-phase 4-wire

Withstand voltage : AC5320V / for 5 sec

between (Voltage input terminal) and (Enclosure)

AC3320V / for 5 sec

between (Voltage input terminal) and (Current input terminal, Power connector, Communication (USB) Connector)

AC2710V / for 5 sec

between (Power connector) and (Current input terminal, Communication

(USB) Connector, Enclosure)

Insulation resistance : $50M\Omega$ or more / 1000V

between (Voltage/Current input terminal, Power connector) and (Enclosure)

Display : 320 x 240(RGB) Pixel, 3.5-inch color STN display

Indication renewal : every 1 sec

LCD Auto-off : Pressing the LCD_ON/OFF Key hides the indications on the LCD; another press

restores the indications. (Menu or Power Key activates in the same way.)

Applicable standards : IEC61010-1, Measurement CAT. III 600V Pollution degree 2,

IEC 61010-031, IEC61326 : 175(L) x 120(W) x 68(D) mm

Dimension : 175(L) x 120(W) x 68(D) mm
Weight : approx 900g (including batteries)

Accessories : Voltage test leads M7141 (red/ green/ black, blue w/alligator clip) x 1 set

Power cord M7170 x 1 pce Input terminal plate (6-kind) x 1 pce Alkaline size AA battery (LR6) x 6 pcs

CD-ROM x 1 pce

- Communication software (KEW PQA MASTER)

- Instruction manual (PDF file) USB cable M7148 (with Filter) x 1 pce

Carrying case M9125 x 1 pce
Quick manual x 1 pce
Cable marker x 32 pce
Compact flash card x 1 pce
Card reader M8319 x 1 pce

Optional parts

Compact flash card 128MB (M-8307)

Compact flash card 256MB (M8322)

Compact flash card 1GB (M8323) 8128(Clamp sensor 50A Ф24mm) M-8127(Clamp sensor 100A Ф24mm) M-8126(Clamp sensor 200A Ф40mm) M-8125(Clamp sensor 500A Ф40mm) M-8124(Clamp sensor 1000A Ф68mm) M-8129(Flexible sensor 3000A Ф150mm)

Power supply adopter M8312

Carrying case (for instrument) M9132

Small alligator clip M7198

 M-8141(Leakage sensor 1A
 Φ24mm)

 M-8142(Leakage sensor 1A
 Φ40mm)

 M-8143(Leakage sensor 1A
 Φ68mm)

 M-8146(Leakage sensor 10A
 Φ24mm)

 M-8147(Leakage sensor10A
 Φ40mm)

 M-8148(Leakage sensor10A
 Φ68mm)

16.1 KEW6310

KEW6310 16.2 Inst measurement

16.2 Inst measurement (W Range)

(1) Voltage Vi [V]

Range	150/ 300/ 600V/ 1000V		
Display digit	4 digits		
Allowable input	10 ~ 110% of each range (1000V range : 20%~)		
Display range	5 ~ 120% of each range		
Crest factor	2.5 or less (100% or less of each range)		
Accuracy	±0.3%rdg±0.2%f.s. (sine wave, 45 ~ 65Hz)		
Instantaneous overload	1200Vrms(1697Veak):10 sec		
Input impedance	approx 2.7MΩ		

(2) Current Ai [A]

) Current Aı [A]			
Range	8128(50A type)	: 1/ 5/ 10/ 20/ 50A	
	8127(100A type)	: 10/ 20/ 50/ 100A	
	8126(200A type)	: 20/ 50/ 100/ 200A	
	8125(500A type)	: 50/ 100/ 200/ 500A	
	8124(1000A type)	: 100/ 200/ 500/ 1000A	
	8129(3000A type)	: 300/ 1000/ 3000A	
Display digit	4 digits		
Allowable input	10 ~ 110% of each range		
Display range	1 ~ 120% of each range		
Crest factor	3.0 or less (90% or less of each range)		
Acquirect	±0.3%rdg±0.2%f.s.+ Accuracy of Clamp sensor		
Accuracy	(sine wave, 45 ~ 65Hz)		
Instantaneous overload	2Vrms(2.828Veak): for 10 sec		
Input impedance	approx 100kΩ		

(3) Active power Pi [W]

3) Active power Pi [vv]	ı [vv]			
Range	Dependi	Depending on combinations of (V Range) x (A Range)		
Display digit	4 digits			
Accuracy	±0.3%rdg±0.2%f.s.+ Accuracy of Clamp sensor (Power factor 1, Sine wave 45 ~ 65Hz)			
Influence of power factor	±1.0%rd	g (readin	g at power factor 0.5 against power factor 1)	
Polarity indication	Consum	ption: + (ı	no mark) , Regenerating: -	
Formula	1P2W	x1	$P = P_1$	
		×2	$P = P_{1} + P_{2}$	
		x 3	$P = P_1 + P_2 + P_3$	
		×4	$P = P_1 + P_2 + P_3 + P_4$	
		x 1	P = P1 + P2	
1P3	1P3W	IP3W ×2	$P = P_1 + P_2$	
			$(P_1 = P1_1 + P2_1, P_2 = P1_2 + P2_2)$	
		x 1	P = P1 + P2	
	3P3W	×2	$P = P_1 + P_2$	
	^2		$(P_1 = P1_1 + P2_1, P_2 = P1_2 + P2_2)$	
	3P4W	×1	P = P1 + P2 + P3	

(4) Frequency f [Hz]

Accuracy		±0.1%rdg±2dgt	
Display of	digit	4 digits	
Allowabl	e input	10 ~ 110% of each Voltage range (sine wave. 45 ~ 65Hz) (1000V range: 20%~)	
Display range		40.00 ~ 70.00Hz	
Signal so	ource	V1-fixed	

(5) Analogue input DCi [V]

٠,	Analogue input Doi [v]	
	Number of input	2 channel (i = 1,2)
	Range	50m/ 500m/ 5V (selectable at each channel)
	Accuracy	±0.5%f.s
	Display digit	4 digits
	Input resistance	approx 225kΩ

KEW6310 16.2

16.2 Inst measurement KEW6310

(6) Item and formula

Apparent power S [VA]

Display digit	same to the	indica	tion for active power
Formula	1P2W	x 1	$S = V \times A$
		x2	$S_i = V1 \times Ai(i = 1,2)$, $S = S_1 + S_2$
		x 3	$S_i = V1 \times Ai(i = 1,2,3)$, $S = S_1 + S_2 + S_3$
		× 4	$S_i = V1 \times Ai(i = 1,2,3,4)$, $S = S_i + S_i +$
	1P3W	×1	$Si = Vi \times Ai(i = 1,2)$, $S = S1 + S2$
		×2	$S = S_1 + S_2$ $(S_1 = S1_1 + S2_1, S_2 = S1_2 + S2_2)$
	3P3W	× 1	$Si = Vi \times Ai(i = 1,2)$, $S = \sqrt{3}/2 (S1 + S2)$
		x 2	$S = S_{1} + S_{2}$ $(S_{1} = \sqrt{3}/2)(S_{1} + S_{1}).$
			$S_2 = \frac{\sqrt{3}}{2} (S1_2 + S2_2)$
	3P3W3A 3P4W	×1	$Si = Vi \times Ai(i = 1,2,3)$, $S = S1 + S2 + S3$

Reactive power Q [Var]

eactive power Q [Var]			
Display digit	same to the	same to the indication for active power	
Mark	-	- : leading phase (current phase against voltage)	
	+	: lagging phase (ditto)	
Formula	1P2W		
		$Q_i = \sqrt{S_i^2 - P_i^2} (i = 1,2).$	
		$Q = Q_{-}1 + Q_{-}2$	
		$Q_i = \sqrt{S_i^2 - P_i^2} (i = 1, 2, 3).$	
		$Q = Q_{-}1 + Q_{-}2 + Q_{-}3$	
		$Q_{i} = \sqrt{S_{i}^{2} - P_{i}^{2}} (i = 1, 2, 3, 4).$	
		$Q = Q_1 + Q_2 + Q_3 + Q_4$	
	1P3W	$Qi = \sqrt{Si^2 - Pi^2} (i = 1, 2), Q = Q1 + Q2$	
		$ Q = Q_1 + Q_2 $	
		$(Q_1 = Q1_1 + Q2_1, Q_2 = Q1_2 + Q2_2)$	
	3P3W	$Qi = \sqrt{Si^2 - Pi^2} (i = 1,2)$. $Q = Q1 + Q2$	
		$(Q_1 = Q1_1 + Q2_1, Q_2 = Q1_2 + Q2_2)$	
	3P3W3A 3P4W	$Qi = \sqrt{Si^2 - Pi^2} (i = 1,2,3), Q = Q1 + Q2 + Q3$	

16.3 KEW6310

Power factor PF			
Display digit	-1.000 ~ 0.0	-1.000 ~ 0.000 ~ 1.000	
Mark	-		: leading phase
	+		: lagging phase
Formula	1P2W	x 1	$PF = \left \frac{P}{S} \right $
		x 2	$PFi = \begin{vmatrix} Pi/Si \end{vmatrix} (i = 1,2). PF = \begin{vmatrix} P/S \end{vmatrix}$
		x 3	$PFi = \begin{vmatrix} Pi/Si \end{vmatrix} (i = 1,2,3), PF = \begin{vmatrix} P/S \end{vmatrix}$
		×4	$PFi = \left \frac{Pi}{Si} \right (i = 1, 2, 3, 4), PF = \left \frac{P}{S} \right $
	1P3W	x 1	$PFi = \begin{vmatrix} Pi/Si \end{vmatrix} (i = 1,2). PF = \begin{vmatrix} P/S \end{vmatrix}$
	3P3W	×1	$PFi = \left \frac{Pi}{Si} \right (i = 1, 2). PF = \left \frac{P}{S} \right $
	3P3W3A 3P4W	×1	$PFi = \begin{vmatrix} Pi/Si \end{vmatrix} (i = 1,2,3), PF = \begin{vmatrix} P/S \end{vmatrix}$

Neutral current

	$An = A1 \times A2\cos\theta_2 \times A3\cos\theta_3$		
Formula	*62 : Phase difference between A1-A2		
	heta3 : Phase difference between A1-A3		

16.3 Integration measurement (Wh Range)

9		9-7		
Diaplay itom	Consumption : WF	? +		
Display item	Regenerating: WI	Regenerating : WP –		
	0.00Wh ~ 999999G	Wh		
Display range	(Display digit and ur	(Display digit and unit are unified to the bigger ones of $\left WS+\right $ and $\left WS-\right $.)		
Formula	Consumption (WP+)	Each phase : $WPi+=\sum_{h=0}^{n-1} \binom{+Pi}{h}$		
		Total: $WP+=\sum (WPi+)$		
	Regenerating (-WP)	Each phase : $WPi - = \sum_{h=0}^{n-1} h$		
		Total: $WP - = \sum (WPi -)$		

- *when $+Pi: P \ge 0$, -Pi: P < 0
- $^{\star}~h~:$ integration period
- * i = 1(1P2Wx1)
- * $i = 1,2 \text{ (1P2W} \times 2, 1P3W, 3P3W)}$
- * i = 1,2,3 (1P2Wx3, 3P3W3A, 3P4W)
- * i = 1,2,3,4 (1P2Wx4)

KEW6310 16.4

Apparent power energy WS [VAh]

Display itom	Consumption : WS	+	
Display item	Regenerating : WS $-$		
	0.00VAh ~ 999999G	VAh	
Display range	(Display digit and unit are unified to the bigger ones of $ WS+ $ and $ WS- $.)		
Formula	Consumption (WS+)	Each phase : $WSi+=\sum_{h=0}^{h} \frac{1}{h}$	
		Total: $WS+=\sum (WSi+)$	
	Regenerating (WS-)	Each phase : $WSi-=\sum_{h=0}^{n-1} \frac{1}{h}$	
		Total: $WS - = \sum (WSi -)$	

- * when +Si : $P \ge 0$, -Si, S at P < 0
- $^{\star}~h~$: integration period
- * i = 1 (1P2Wx1)
- * $i = 1,2 \text{ (1P2W} \times 2, 1P3W, 3P3W)$
- * i = 1,2,3 (1P2Wx3, 3P3W3A, 3P4W)
- * $i = 1,2,3,4 \text{ (1P2W} \times 4)$

Reactive power energy WQ [varh]

Reactive power energy	vv@ [vaiii]		
Display its as	Consumption : (lagging) WQ_i +, (leading) WQ_c +		
Display item	[Regenerating: (lagging) $\ WQ_i$ –, (leading) $\ WQ_c$ –] No mark		
	0.00varh ~ 9999990	Svarh	
Display range	(Display digit and unit are unified to the bigger ones of $\left WS+\right $ and $\left WS-\right $.)		
Formula	Consumption_ lagging (WQi+)	Each phase : $WQi+=\sum^{\left(+\right.}Q_{i}i)/h$	
		Total : $WQ_i + = \sum \left(WQ_i i + \right)$	
	Consumption_ leading (WQc+)	Each phase : $WQ_ci+=\sum_{}^{}\left(+Q_ci\right)\!$	
	(WQCI)	Total : WQ_c + = $\sum (WQ_ci+)$	
	Regenerating_ lagging (WQi-)	Each phase : $WQ_ii - = \sum_{i} \left(-Q_ii\right)_h$	
	(114.)	Total : $WQ_i - = \sum (WQ_ii -)$	
	Regenerating_ leading (WQc-)	Each phase : $WQ_ii - = \sum_{i=1}^{n} \left(-Q_ii\right)_h^{i}$	
	()	Total : $WQ_c - = \sum (WQ_c i -)$	

* Q when +WQci : P≥0 and Q≥0, Q when +WQii: P≥0 and Q<0 Q when -WQci : P<0 and Q≥0, Q when -WQii : P<0 and Q<0

Elapsed time: time passed from the start of recording

			3	
Dis	play item	hhhhh : mm : ss	(Hour : Minute : Second)	
Dis	play range	00000:00:00 ~	99999:59:59	

16.5 KEW6310

16.4 Demand measurement ((DEMAND) Range)

(1) Target value (DEM Target)

Display range Fixed set value (1.000mW ~ 999.9TW)

(2) Predicted value (DEM Guess)

Display range	Same decimal point place and unit to target value		
Formula	$DEM_{GUESS} = \sum DEM \times \frac{Demand_interval}{Period_from_beginning_of_demand_interval}$		

(3) Demand value (present value) (ΣDEM)

 <i>y</i>		
Display range	Same decimal point place and unit to target value	
Formula	$\Sigma DEM = (+WP) \times \frac{1hour}{interval}$	
	where: $\Sigma DEM = \sum \Sigma DEMi$	

- * i = 1 (1P2W×1)
- * i = 2 (1P2W×2,1P3W,3P3W)
- * i = 3 (1P2W×3,3P3W3A,3P4W)
- * i = 4 (1P2W×4)

(4) Load factor

,	
Display range	0.00 ~ 9999.99%
Formula	$\Sigma DEM/DEM_{Target}$

16.5 Waveform measurement (Range)

Displayed data	2 waveforms (256 points)			
Scale change	0.1/ 0.2/ 0.5/ 1.0/ 2.0/ 3.0 times of rating			

16.6 Harmonic measurement (Range)

Meas. Method	PLL synchro system				
Measuring range	45 ~ 65Hz				
Analysis order	1 ~ 63rd				
Window width	2 cycles				
Window type	Rectangular				
Analysis data	512 points				
Analyzing rate	approx once / 2 sec				
Display item	(1) Voltage, current, THD, frequency (2) Voltage/ Rate of content/ Phase angle at each order				
Save item (1) Voltage, current, THD (2) Voltage/ Phase angle at each order					

16.6

16.7 Power quality (QUALITY Range)

16.7.1 Swell/ Dip/ Int measurement

Meas. Method	Calculate RMS values based on an overlapped waveform at every half waveform. Judges the presence of events at every 1s.			
Detection CH	VN - V1			
Display item	(1) 1-sec avg(2) Number of occurrence of Swell/ Dip/ Int(3) Month/ date/ time when event began(4) Month/ date/ time when event finished(5) Duration			
Save item	Display items (3) ~ (5) Data at the occurrence of event or before/ after the event (201 in total) Recording start and end date and time			

16.7.2 Transient measurement

Meas. Method	Sampling at every 100µs, and calculating the max value at every 2ms Judges the presence of events at every 1s.			
Detection CH	VN - V1			
Display item	(1) max value in 1 sec(2) Number of event(3) Year/ month/ date/ time when max voltage occurred(4) Max voltage			
Save item	(3) & (4) of display items Data before/ after the max voltage is recorded (201 in total) Recording start and end date and time			

16.7.3 Inrush current measurement

Meas. Method	Calculate RMS values based on an overlapped waveform at every half waveform. Judges the presence of events at every 1s.			
Detection CH	A1			
Display item	 (1) 1-sec avg (2) Number of event (counting at the start of event) (3) Month/ date/ time when event begin (4) Month/ date/ time when event finish (5) Max current (6) Duration 			
Save item	Display items (3) & (4) Data before/ after the max voltage is recorded (201 in total) Recording start/ end date and time			

16.7.4 Unbalance rate measurement

Meas. Method	∇ vector display					
	Voltage / current unbalance rate					
Save item	(Measurement data at W Range) + (Unbalance rate)					
Measurable wiring configuration	ѾЗРЗWЗA, ѾЗР4W×1, ѾЗР4W×1+1A					
Formula	umb = \frac{reversed _ phase _ voltage(current)}{positive _ phase _ voltage(current)}					

16.7 KEW6310

16.7.5 Capacitance calculation

Display item	Same to W Range (except for the change from PA to C)				
Save item	(Measurement data at W Range) + (calculated capacitance value)				
Formula	$C = P \times \left((\sqrt{\frac{1}{\cos^2 \theta_1}} - 1) - \sqrt{\frac{1}{\cos^2 \theta_{-0}}} - 1) \left[k \operatorname{var} \right] = \frac{P \times 10^{-9}}{2\pi f \times V^2} \times \left((\sqrt{\frac{1}{\cos^2 \theta_1}} - 1) - \sqrt{\frac{1}{\cos^2 \theta_{-0}}} - 1) \left[\mu F \right] \right]$ $C : \text{Capacitance needs for improvement}$ $P : \text{Load power [kW]}$ $f : \text{Frequency}$ $V : \text{Voltage}$				
	$\cos heta_{\scriptscriptstyle \parallel}$: Measured power factor				
	$\cos \theta_{\rm o}$: New power factor (target)				

16.8 Other specifications

(1) AC power supply

Voltage range		100 ~ 240V±10%
Frequency	45 -	~ 65Hz
Power consumption	20\	/A max

(2) DC power supply

	Dry battery	Rechargeable battery
Туре	Alkaline (LR6)	Ni-MH(HR-15-51)
Rated voltage	DC9V (=1.5Vx6)	DC7.2V (=1.2Vx6)
Current consumption	500mA typ.(@9V)	560mA typ.(@7.2V)
Possible measurement time	Backlight ON: 1 hour	Backlight ON: 2 hours
	Backlight OFF: 2 hours	Backlight OFF: 5 hours
	(ref. at 23°C)	(ref. at 23°C after full-charge)

(3) Battery charge

) battery charge					
Charging voltage	approx 9V				
Charging current	approx 400mA				
Charging pattern	Charging pattern is as follows to control whole current consumption.				
	Pattern	Charging	Pause	Total	
				charging time	
	I. Power ON, LCD_ON	0.7	4.3	48	
	II. Power ON, LCD_OFF	2.1	2.9	14	
	III. Power OFF	4.2	8.0	7	
			[mii	n] [hour]	
Start charging	Following should be completely	met.			
- Supply of power from AC power supply					
- Selector switch is set to "Rechargeable battery" positi				tion.	
	- Operation to start battery charge				
Finish charging	Battery charge stops if any of for	ollowing is met			
	<for i,="" ii="" pattern=""></for>				
	(1) power from AC power supply is stopped,				
	(2) selector switch is set to "Dry battery" position,				
	(3) 48hours later from the start of battery charge,				
	(4) Battery voltage becomes lower than that checked at previous pause period,				
	(5) charging voltage is 9.5V or more (batteries are removed),				
	(6) specific charging cycle is exceeded.				
	<for iii="" pattern=""></for>				
Battery charge stops if Any of (1), (4), (5), (6) is met.					

KEW6310 16.8

(4) Battery check function

.) Dancery erroent remiets					
Power supply			Battery voltage [V] (±0.2V)		
		Mark	Dry battery	Rechargeable battery	
AC power supply		⊈			
DC power supply	Effective range	20 ~ 100% (by 20%)	6.0 ~ 10.5V	6.9 ~ 10.5V	
(battery)	Warning	0%	6V or less	6.9V or less	

^{*} AC power supply has priority.

(5) Recording data

Internal memory

Memory	FLASH memory
Recording capacity	1.8MB
	Measurement file (CSV): 256kB x 6 blocks (=1.536MB)
	Screen file (BMP): 32kB x 7 blocks (=0.224MB)
	Configuration file (KAS) : 32kB
Max number of files	Measurement file (CSV): 6 files
	Screen file (BMP): 7 files
	Configuration file (KAS): 20 files

PC Card

Card type	Compact flash card (CF card)
Slot	Type I / II
Format	FAT16
Capacity	32M/ 64M/ 128M/ 256M/ 512M/ 1GB
Max number of file	max 512 files (with name of one-byte 8 characters or less)
Save format	CSV format
File name	Refer to the sections for Internal memory
Mark	"CF" mark appears if the data is being saved in the CF card.
FULL indication	Appears when saved data size or number of saved file exceeds the capacity. Data cannot be saved while this mark is being displayed. (measurement can be done and indications are refreshed accordingly, but data isn't saved)

(6) External communication function

/ =/torrial communication random	
Communication method	USB Ver1.1
USB identification no.	Vendor ID: 12EC(Hex)
	Product ID: 6310(Hex)
	Serial no.: 0+7 digit individual no
Communication speed	19200bps
Baud rate	

^{*} Connecting some KEW6310 (max 10pcs) in daisy chain via HUB enables individual identification. (data transfer to PC can be done one by one)

(6) External communication function

١-			
	Output format	Open collector	
	Max input	30V, 50mA, 200mW	
	Out put voltage	Hi : 4 ~ 5V	
		Lo:0~1V	

16.9 KEW6310

^{*} Recording stops when battery level drops to the warning level, and indications on the LCD disappear.

^{*} USB cable of 2m or less is recommended. (max 5m)