

PEWA Messtechnik GmbH

Weidenweg 21 58239 Schwerte

Tel.: 02304-96109-0 Fax: 02304-96109-88 E-Mail: info@pewa.de Homepage : www.pewa .de

PowerQ4 und PowerQ4 Plus MI 2592 und MI 2792 Bedienungsanleitung Version 1.0, Code Nr. 20 751 918

Lieferant:

Hersteller:

METREL d.d. Ljubljanska cesta 77 1354 Horjul Slowenien

Website: <u>http://www.metrel.de</u> E-Mail: <u>metrel@metrel.de</u>

CE Die Marke auf Ihrem Gerät stellt sicher, dass das Gerät die Anforderungen der EU (Europäische Union) hinsichtlich der Sicherheit und Störungsfreiheit von Geräten erfüllt

© 2011 METREL

Kein Teil dieser Veröffentlichung darf ohne die ausdrückliche schriftliche Genehmigung von METREL ganz oder teilweise in jedweder Form wiedergegeben, veröffentlicht oder reproduziert werden.

1	Einfül	hrung	6
	1.1 H	auptleistungsmerkmale	6
	1.2 S	icherheitshinweise	7
	1.3 A	nwendbare Standards / Normen	8
	1.4 A	bkürzungen	9
2	Besch	nreibung	12
-	2.1 V	orderseite	12
	2.2 A	nschlussplatte	13
	2.3 A	nsicht von unten	14
	2.4 7	ubehör	14
	2.4.1	Standardzubehör	14
	2.4.2	Optionales Zubehör	15
2	Bodio	nung dos Instruments	16
3		auptmonü dos Instruments	17
	১.া ⊓ 211	Houpfunktionen des Instruments	1 <i>1</i> 10
	ວ. I.I ວິວິ M		10
	J.∠ IV	Motor Apzoigo	19
	3.Z. I	Nielei-Anzeige	19
	3.Z.Z 2.2.2	Appieht Trond (Varlauf)	20
	3.Z.J	Alisichit Hend (Vendur)	22
	2.3 L	Motor Apzoigo	25
	222	Ansight Trond (Varlauf)	20
	2/ M	Ansicht Hend (Vendur)	20 20
	3.4 IV 3.5 ビ	armonischo / Interparmonischo Monü	20
	3.5 1	Motor Anzoigo	30
	352	Histogramm (Balken)	30
	353	Ansicht Trend (Verlauf)	32 32
	3.5.5 3.6 F	Ansicht Hend (Vendur)	35
	361	Meter-Anzeige	36
	362	Ansicht Trend (Verlauf)	37
	37 A	Allsicht Therid (Verlauf)	20
	3.7 A	Der Bildschirm Dhasendiagramm	38
	372	Symmetriediagramm	30
	373	Symmetrieverlauf	<u>10</u>
	3.7.5 3.8 T	emperatur	40
	3.0 1	Motor-Anzeige	42 12
	382	Ansicht Trend (\/erlauf)	7 <u>7</u> 12
	30.0.2 30 Δ	Ilgemeiner Recorder	42 43
	3 10 M	/ellenform-Recorder	40 46
	3 10 1	Setun (Finrichtung)	40 47
	3 10 2	Aufzeichnen der Wellenform	<u>48</u>
	3 10.2	Wellenform-Erfassungen	70 /0
	3 11 P	ecorder für Einschaltsnitze	43 53
	2 11 1	Setun (Finrichtung)	52
	3 11 2	Erfassen der Einschaltsnitze	55
	3 11 2	Erfaseta Finechaltenitza	56
	3 12 0	acordar für Transianta	57
	J.1∠ T. 2121	Sotup (Finrichtung)	51 52
	J. IZ. I 2 10 0	Frassen von Transienten	50
	J. 12.2 2 10 2	Enassen von mansienten Frfaseta Transienten	60
	ປ. 1 🗠 . ປ		00

	3.13 Ere	ignistabelle	63
	3.14 Ala	rmtabelle	67
	3.15 Mei	mory List (Speicherliste)	69
	3.15.1	Aufzeichnen	70
	3.15.2	Momentanwert einer Wellenform	72
	3.15.3	Wellenform-Datensatz	73
	3.15.4	Protokoll für Einschaltspitze	73
	3.15.5	Transienten-Aufzeichnung	73
	3.16 Set	up-Menü Messung	73
	3.16.1	Verbindungseinrichtung	74
	3.16.2	Event Setup (Ereigniseinrichtung)	76
	3.16.3	Alarm Setup (Alarm einrichten)	77
	3.16.4	Signaleinrichtung	78
	3.17 Allg	emeines Setup	79
	3.17.1	Communication (Kommunikation)	80
	3.17.2	Time & Date (Zeit & Datum)	
	3.17.3	Language (Sprache)	
	3.17.4	Speicher löschen	
	3.17.5	Instrument into (Instrumenteninformation)	83
	3.17.6	Verriegein / Entriegein	83
4	Praxis f	ür Aufzeichnung und Anschluss des Instruments	86
	4.1 Dur	chführen von Messungen	86
	4.2 Ans	chlusseinrichtung	90
	4.2.1	Anschluss an die Niederspannungsnetze	90
	4.2.2	Anschluss an Mittel- und Hochspannungsnetze	93
	4.2.3	Stromzange auswählen und Transformationsverhältnis einstellen	94
	4.2.4	Anschluss eines Temperaturfühlers	
	4.2.5	GPS-Zeitsynchronisierung bei Geräteanschluss	
	4.2.6	Anschluss des GPRS-Modems	100
	4.3 Anz	ahl der gemessenen Parameter und Abhangigkeit zur Verbindungsart	101
5	Theorie	und interne Funktion	105
	5.1 Mes	ssverfahren	105
	5.1.1	Messungsaggregation über Zeitintervalle	105
	5.1.2	Spannungsmessung (Spannungsklasse)	105
	5.1.3	Strommessung (Stromklasse)	106
	5.1.4	Frequenzmessung	106
	5.1.5	Phasenleistungsmessungen	107
	5.1.6		107
	5.1.7		108
	5.1.8	Harmonische und Internarmonische	109
	5.1.9		
	5.1.10 5.4.44	FIICKern	
	5.1.11 5.1.10	Spannungs- und Strom-Asymmetrie	Z
	5.1.1Z	Spannungsereignisse	113
	5115	Datapagerogation boildor ALL GEMEINIEN ALLEZEICUNIUNC	1 10 117
	5.1.14	Momontanwort ainor Wollenform	/ ۱۱ ۱۹۵
	5115	Wollonform Datapastz	I∠U 1⊃1
	5110	Transienten-Recorder	I∠I 101
	5112	Recorder für Einschaltsnitze	121 100
	5.1.10	1000 นิยา นิเ Linoonaliopize	122

	52 Übe	erblick zur Norm EN 50160	123
	521	Netzfrequenz	124
	522	Schwankungen der Versorgungssnannung	124
	523	Spannungsabfälle (indikativische Werte)	124
	524	Kurze Unterbrechung der Versorgungsspannung	125
	525	Lange Unterbrechung der Versorgungsspannung	125
	526	Asymmetrie der Versorgungsspannung	125
	527	THD-Spannung und Oberwellen	125
	528	Interharmonische Oberwellenspannung	125
	529	Netzsignale an der Versorgungsspannung	126
	5210	Flickerstärke	126
	5211	PowerQ4 / PowerQ4 Plus-Recordereinstellung für EN 50160-Messungen	126
6	Technic	n onore n'i onore n'i de recordoroniolonarig la El corto moccargon	120
O		amaina Angahan	120
	6.1 Ally		120
		Allagmaina Baashraikung	120
	0.2.1	Aligemeine Beschreibung	120
	0.2.2	Phasenspannungen	129
	0.2.3	Leiterspannungen	130
	0.2.4 6.2.5	Strom	130
	0.2.3		131
	0.2.0	Flickermessung	131
	0.2.7	Leistung	131
	0.2.8	Leistungstaktor (P1)	132
	0.2.9	Verschiedungslaktor (Cos φ)	132
	0.2.10	Energie	132
	0.2.11	Spannungsoberweilen und Gesamtklimfaktor (THD)	133
	0.2.12	Stromoderweiten und Gesamtkilmaktor (THD)	100
	0.2.13	Internarmonische Spannungsoberweilen	133
	0.2.14	Internarmonische Stromoberweiten	134
	0.2.15		134
	0.2.10	Asymmetrie	134
	0.2.17	Zeil- und Dauer-Genauigkeit	134
	0.2.18		134
	6.3 Rec		135
	0.3.1	Allgemeiner Recorder	135
	0.3.2		100
	0.3.3	Recorder für Einschaltspilze / schneil	130
	0.3.4	Nomentariwert einer vvelleniorm	130
	0.3.5 6.4 Fufi	Recorder für Transiente	130
	0.4 Ent	Inte Normen	130
	0.4.1	Das Geral erfulli die Norm IEC 01007-12	130
	0.4.2	Enuliung der Norm IEC 61000-4-30	138
7	Wartun	g	139
	7.1 Ein:	setzen der Batterien in das Instrument	139
	7.2 Bat	terien	140
	7.3 Bet	rachtungen zur Stromversorgung	141
	7.4 Rei	nigung	141
	7.5 Per	iodische Kalibrierung	141
	7.6 Ser	vice	141
	7.7 Feh	lerbehebung	142

1 Einführung

PowerQ4 und PowerQ4 Plus sind multifunktionale Handheld-Messgeräte für hochwertige Strommessungen und Energieeffizienz-Messungen.

Abbildung 1.1: Messgerät PowerQ4 / PowerQ4 Plus

1.1 Hauptleistungsmerkmale

- 4 Spannungskanäle mit großem Messbereich: 0 ÷ 1000 Vrms, CAT III / 1000 V.
- 4 Stromkanäle mit Unterstützung für automatische Stromzangenentdeckung und Messbereichswahl am Instrument¹.
- Erfüllt die Anforderungen der Netzqualitätsstandards IEC 61000-4-30 Klasse S/A. Vordefiniertes Recorderprofil für Analysen nach EN 50160.
- Leistungsmessung erfüllt Anforderungen von IEC 61557-12 und IEEE 1448.
- 8 Kanäle gleichzeitig 16-Bit-AD-Wandlung zur genauen Leistungsmessung (minimaler Phasenverschiebungsfehler).
- Einfache Bedienung und leistungsfähige Aufzeichnungsfunktionen mit 8 MByte Speicher sowie der Möglichkeit, 524 unterschiedliche Netzqualitätssignaturen aufzuzeichnen.
- Messen und Aufzeichnen von Interharmonischen und Netzsignalen².

¹ nur in Verbindung mit Metrel "Smart Clamps"

² nur PowerQ4 Plus

- Digitales Thermometer zur Temperaturmessung.¹
- Leistungsstarke Fehlerbehebungs-Tools: Recorder für Transienten¹, Einschaltspitzen / schnell und Wellenform¹.
- Erfassen von Spannungsereignissen und benutzerdefinierten Alarmen.
- 15 Stunden Batteriebetrieb.
- Die **PowerView v2.0**-PC-Software bietet alle Möglichkeiten, Messdaten auf einfache Weise auszulesen, zu analysieren und zu drucken.
 - Der PowerView v2.0 Analyzer bietet eine einfache und dennoch leistungsfähige Schnittstelle, um Instrumentendaten zu übertragen und schnell eine intuitive und aussagekräftige Analyse durchzuführen. Die Schnittstelle bietet zur schnellen Auswahl der Daten eine dem Windows Explorer nachempfundene Baumstruktur.
 - Der Anwender kann die aufgezeichneten Daten auf einfache Weise herunterladen und f
 ür jeden Standort und die zugeh
 örigen untergeordneten Standorte getrennt organisieren.
 - Für Ihre Netzqualitätsdatenanalyse können Sie Diagramme, Tabellen und Graphen und professionelle Berichte erstellen und ausdrucken.
 - Zur weiteren Analyse können Sie Daten für andere Anwendungen exportieren bzw. kopieren und einfügen (z. B. für Tabellenkalkulationsprogramme).
 - Zahlreiche Datenaufzeichnungen können zugleich angezeigt und analysiert werden. Es können unterschiedliche Datenprotokolle in einer Messung zusammengeführt werden, mit verschiedenen Instrumenten aufgezeichnete Daten zeitversetzt synchronisiert werden, aufgezeichnete Daten in verschiedene Messungen aufgesplittet werden und es können die interessantesten Daten extrahiert werden.

1.2 Sicherheitshinweise

Um die Sicherheit der Bedienperson bei der Verwendung des PowerQ4- / PowerQ4 Plus-Instruments zu gewährleisten und um das Beschädigungsrisiko für das Instrument zu minimieren, beachten Sie bitte die folgenden Warnungen:

Das Instrument wurde für maximale Bedienersicherheit konzipiert. Nicht bestimmungsgemäße Verwendung des Instruments erhöht die Verletzungsgefahr für die Bedienperson!

Das Instrument bzw. das zugehörige Zubehör niemals verwenden, wenn es einen sichtbare Beschädigung aufweist!

Das Instrument verfügt über keine vom Bediener zu wartenden Teile. Nur ein Vertragshändler darf Wartungs- oder Anpassungsarbeiten durchführen!

Alle normalen Sicherheitsmaßnahmen müssen ergriffen werden, um einen Stromschlag an elektrischen Anlagen zu vermeiden!

Es darf nur zugelassenes, bei Ihrem Lieferanten erhältliches Zubehör verwendet werden!

¹ nur PowerQ4 Plus

Das Instrument enthält wiederaufladbare NiMh-Batterien. Die Batterien müssen durch Batterien des gleichen Typs ersetzt werden. Die Batterietypangabe finden Sie auf dem Etikett im Batteriefach oder in diesem Handbuch. Explosionsgefahr: Keine Standardbatterien verwenden, wenn das Instrument am Netzteil bzw. das Batterieladegerät angeschlossen ist, da die Batterien explodieren können!

Im Inneren des Geräts bestehen gefährliche Spannungen. Entfernen Sie alle Messleitungen, entfernen Sie das Kabel der Stromversorgung und schalten Sie das Instrument aus, bevor Sie die Abdeckung des Batteriefachs abnehmen.

Bei hohen Umgebungstemperaturen (> 40 °C) kann die Batteriefachschraube die maximal zulässige Temperatur für das Metallteil des Griffs überschreiten. Bei derartigen Umgebungsbedingungen wird empfohlen, die Batterieabdeckung nicht während des Ladevorgangs oder unmittelbar nach dem Laden zu berühren.

Die Maximalspannung zwischen jedem Phasen- und Nullleitereingang beträgt 1000 V_{RMS}. Die Maximalspannung zwischen den Phasen beträgt 1730 V_{RMS}.

Nicht verwendete Spannungseingänge (L1, L2, L3, GND) stets mit dem Nullleitereingang (N) kurzschließen, um Messfehler und falsch ausgelöste Ereignisse aufgrund von Kopplungsrauschen zu vermeiden.

1.3 Anwendbare Standards / Normen

Die Instrumente der Modellreihe PowerQ4 / PowerQ4 Plus wurden in Übereinstimmung mit den folgenden Normen bzw. Standards konzipiert und geprüft:

Elektromagnetische Kompatibilität (EMC)				
EN 61326-2-2: 2006	Elektrische Mess-, Steuer-, Regel- und Laborgeräte.			
	 Emission: Geräteklasse A (für den industriellen Einsatz) 			
	 Störfestigkeit beim Betrieb des Geräts in Industrieumgebungen 			
Sicherheit (LVD)				
EN 61010-1:2001	Sicherheitsanforderungen für elektrische Mess-, Steuer-, Regel- und Laborgeräte			
Messverfahren				
IEC 61000-4-30: 2008 Klasse S	Prüf- und Messverfahren – Netzqualitätsmessverfahren			
IEC 61557-12:2007	Geräte zum Prüfen, Messen oder Überwachen von Schutzmaßnahmen – Teil 12: Kombinierte Geräte zur Messung und Überwachung des Betriebsverhaltens (PMD)			
IEC 61000-4-7: 2002 + A1: 2008 Klasse II	Allgemeiner Leitfaden für Verfahren und Geräte zur Messung von Oberschwingungen und Zwischen- harmonischen in Stromversorgungsnetzen und angeschlossenen Geräten			
IEC 61000-4-15: 2010	Prüf- und Messverfahren; Flickermeter; Funktions- beschreibung und Auslegungsspezifikation			
EN 50160: 2010	Merkmale der Spannung in öffentlichen Elektrizitäts- versorgungsnetzen			

Anmerkung zu EN und IEC-Normen:

Der Text dieses Handbuchs enthält Referenzen auf europäische Normen. Alle Normen der Reihe EN 6XXXX (z. B. EN 61010) entsprechen den jeweiligen IEC-Normen mit derselben Nummer (z. B. IEC 61010); sie unterscheiden sich lediglich in den aufgrund der europäischen Harmonisierungsverfahren modifizierten Teilen.

1.4 Abkürzungen

In diesem Dokument werden die folgenden Symbole und Abkürzungen verwendet:

- *Cf*^{*I*} Strom-Crest-Faktor, einschließlich Cf_{Ip} (Strom-Scheitelfaktor der Phase p) und Cf_{IN} (Strom-Scheitelfaktor des Neutralleiters). Definition, s. 5.1.3.
- Cf_U Spannungs-Crest-Faktor, einschließlich Cf_{Upg} (Spannungs-Scheitelfaktor von Phase p zu Phase g) und Cf_{Up} (Spannungs-Scheitelfaktor des Neutralleiters). Definition, s. 5.1.2.

 $Cos \varphi$,Verschiebungsfaktor (DPF) einschließlich $Cos \varphi_p$ / DPFDPFDPFder Phase p). Definition, s. 5.1.5 und 5.1.6.

- eP^+ , eP^- Wirkenergie einschließlich eP_p (Energie der Phase p) und eP_{tot} (Gesamtenergie). Ein Minuszeichen bedeutet erzeugte und ein Pluszeichen verbrauchte Energie. Definition, s. 5.1.7.
- eQⁱ⁺, eQ^{c+}, Blindleistung inklusive eQ_p (Energie der Phase p) und eQ_{tot}
 eQⁱ⁻, eQ^{c-} (Gesamtenergie). Ein Minuszeichen bedeutet erzeugte und ein Pluszeichen verbrauchte Energie. Induktive Blindleistung wird mit dem Buchstaben "i" und kapazitive Blindleistung mit dem "c" gekennzeichnet. Definition, s. 5.1.7.
- eS^+ , eS^- Scheinenergie. Ein Minuszeichen bedeutet erzeugte und ein Pluszeichen verbrauchte Energie. Definition, s. 5.1.7.
- f, freq Frequenz, einschließlich freq_{U12} (Frequenz der Spannung an U₁₂), freq_{U1} (Frequenz der Spannung an U₁ und freq_{I1} (Frequenz des Stroms an I₁). Definition, s. 5.1.4.
- *i* Negativsequenzstrom-Verhältnis (%). Definition, s. 5.1.11.
- *i*⁰ Nullsequenzstrom-Verhältnis (%). Definition, s. 5.1.11.
- *I*⁺ Positivsequenz-Stromkomponente an Dreiphasensystemen.Definition, s. 5.1.11.
- *I* Negativsequenz-Stromkomponente an Dreiphasensystemen. Definition, s. 5.1.11.
- *I⁰* Nullsequenz-Stromkomponenten an Dreiphasensystemen. Definition, s. 5.1.11.
- $I_{\chi_{eff}}$ Über jede Halbwelle gemessener Effektivstrom, einschließlich $I_{p\chi_{eff}}$ (Strom der Phase p), $I_{N\chi_{eff}}$ ([RMS-] Effektivstrom des Neutralleiters)
- I_{Fnd} (RMS-) Effektivwert des Grundstroms Ih₁ (der 1. Oberwelle), einschließlich I_{pEnd} ([RMS-] Effektivwert des Grundstroms der Phase p) sowie I_{NEnd} ([RMS-] Effektivwert des Grundstroms des Nullleiters). Definition, s. 5.1.8.

- Ih_n
 n. Komponente des Oberwellen-Effektivstroms einschließlich I_ph_n (n. Komponente des Oberwellen-Effektivstroms der Phase P) und I_Nh_n (n. Komponente des Oberwellen-Effektivstroms des Nullleiters). Definition, s. 5.1.8.
- $\begin{array}{ll} \textit{lih}_n & \text{n. Komponente des Interharmonische-Effektivstroms einschließlich I_pih_n} \\ (n. Komponente des Interharmonische-Effektivstroms der Phase P) und I_Nh_n (n. Komponente des Interharmonische-Effektivstroms des Nullleiters). \\ Definition, s. 5.1.8. \end{array}$
- *I_{nom}* Nennstrom. Strom des Stromzangensensors für 1 Vrms ff am Ausgang
- I_{Pk} Spitzenstrom, einschließlich I_{pPk} (Strom der Phase p) einschließlich I_{NPk} (Scheitelstrom des Neutralleiters)
- *I_{Rms}* (RMS-) Effektivstrom, einschließlich *I*_{pRms} (Strom der Phase), *I*_{NRms} ([RMS-] Effektivstrom des Neutralleiters). Definition, s. 5.1.3.
- $\pm P, P^+, P^-$ Wirkleistung einschließlich P_P (Wirkleistung Phase p) und P_{tot} (Gesamtwirkleistung). Ein Minuszeichen bedeutet erzeugte Leistung und kein Zeichen verbrauchte Leistung. Definition, s. 5.1.5 und 5.1.6.
- *p, pg* Indizes. Anmerkung für Parameter der Phase p: [1, 2, 3] oder Phase-zu-Phase pg: [12, 23, 31]

PF, PFⁱ⁺, Power Factor (Leitungsfaktor) einschließlich PF_p (PF-Vektor Phase) und PF^{c+}, PFⁱ⁻, PFⁱ⁻, PFⁱ⁻, PF^{c-}
 PFc⁻ PF^{c-}
 PF beta (Summe PF-Vektor). Ein Minuszeichen bedeutet erzeugte und ein Pluszeichen verbrauchte Leistung. Der induktive Leistungsfaktor wird mit dem Buchstaben "i" und der kapazitive Leistungsfaktor mit dem Buchstaben "c" gekennzeichnet.

Hinweis: PF = Cos φ wenn keine oberen Harmonischen vorliegen. Definition, s. 5.1.5 und 5.1.6.

- P_{lt}LangfristigesFlickern (2Stunden)einschließlichP_{ltpg} (langfristigesSpannungsflickern derPhase p zurPhase g)undP_{ltp} (langfristigesSpannungsflickern derPhase p zumNeutralleiter).Definition, s. 5.1.9.
- *P_{st}* Kurzfristiges Flickern (10 Minuten) einschließlich P_{stpg} (kurzfristiges Spannungsflickern der Phase p zur Phase g) und P_{stp} (kurzfristiges Spannungsflickern der Phase p zum Neutralleiter). Definition, s. 5.1.9.
- *P*_{st1min} Kurzfristiges Flickern (1 Minute) einschließlich P_{st1minpg} (kurzfristiges Spannungsflickern der Phase p zur Phase g) und P_{st1minp} (kurzfristiges Spannungsflickern der Phase p zum Neutralleiter). Definition, s. 5.1.9.
- *±Q*, *Qⁱ⁺*, Blindleistung einschließlich P_p (Blindleistung Phase p) und P_{tot} *Q^{c+}*, *Qⁱ⁻*, (Gesamtblindleistung). Ein Minuszeichen bedeutet erzeugte und ein Pluszeichen verbrauchte Leistung. Induktive Blindleistung wird mit dem Buchstaben "i" und kapazitive Blindleistung mit dem "c" gekennzeichnet. Definition, s. 5.1.5 und 5.1.6.
- S, S^*, S^- Scheinleistung einschließlich S_p (Scheinleistung Phase p) und S_{tot} (Gesamtscheinleistung). Definition, s. 5.1.5 und 5.1.6. Das Minuszeichen bedeutet Scheinleistung während der Generation und das Pluszeichen weist auf Scheinleistung während des Verbrauchs hin. Definition, s. 5.1.5 und 5.1.6.

THD _I	Gesamtklirrfaktor (THD) des Stroms am Grundstrom, einschließlich THD _{lp} (THD des Stroms Phase p) und THD _{lN} (THD des Stroms am Neutralleiter). Definition, s. 5.1.8.		
THDυ	Gesamtklirrfaktor (THD) der Spannung an der Grundspannung, einschließlich THD _{Upg} (THD der Spannung Phase p zu Phase g) und THD _{Up} (THD der Spannung Phase p zu Neutralleiter). Definition, s. 5.1.11.		
u	Negativsequenz-Spannungsverhältnis (%). Definition, s. 5.1.11.		
<i>u</i> ⁰	Nullsequenz-Spannungsverhältnis (%). Definition, s. 5.1.11.		
U, U _{Rms}	(RMS-) Effektivspannung, einschließlich U_{pg} (Spannung Phase p zu Phase g) und U_p (Phase p zu Nullleiter). Definition. s. 5.1.2.		
U^{*}	Positivsequenz-Spannungskomponente an Dreiphasensystemen. Definition, s. 5.1.11.		
U	Negativsequenz-Spannungskomponente an Dreiphasensystemen. Definition, s. 5.1.11.		
U^0	Nullsequenz-Spannungskomponente an Dreiphasensystemen. Definition, s. 5.1.11.		
U_{Dip}	Minimale Spannung U _{Rms(1/2)} während des Auftretens eines Spannungsabfalls		
U _{Fnd}	(RMS-) Effektiver Mittelwert der Spannung (Effektivspannung) (Uh ₁ an 1. Oberwelle), einschließlich U_{pgFnd} (Effektivspannung Phase p zu Phase g) und U_{pFmd} (Effektivspannung Phase p zu Nullleiter). Definition, s. 5.1.8.		
Uh _N	Effektivspannungskomponente an der n. Oberwelle einschließlich $U_{pg}h_N$ (Effektivspannungskomponente an der n. Oberwelle Phase p zu Phase g) und U_ph_N (Effektivspannungskomponente an der n. Oberwelle Phase p zu Neutralleiter). Definition, s. 5.1.8.		
Uih _N	Effektivspannungskomponente an der n. Interharmonischen einschließlich $U_{pg}h_N$ (Effektivspannungskomponente an der n. Interharmonischen Phase p zu Phase g) und U_ph_N (Effektivspannungskomponente an der n. Interharmonischen Phase p zu Nullleiter). Definition, s. 5.1.8.		
U _{Int}	Minimale Spannung U _{Rms(1/2)} während des Auftretens einer Unterbrechung		
U _{Nom}	Nennspannung, normalerweise eine Spannung, anhand derer ein Netzwerk bezeichnet oder identifiziert wird		
U_{Pk}	Spitzenspannung (Scheitelspannung), einschließlich U_{pgPk} (Spannung Phase p zu Phase g) und U_{PPk} (Spannung Phase p zu Neutralleiter)		
U _{Rms(1/2)}	Mit jeder Halbwelle aktualisierter effektiver (RMS-) Mittelwert der Spannung, einschließlich $U_{pgRms(1/2)}$ (Halbwellenspannung Phase p zu Phase g) und $U_{pRms(1/2)}$ (Halbwellenspannung Phase p zu Neutralleiter), Definition, s. 5.1.12.		
U _{Swell}	Effektiver Mittelwert der während eines Anstiegs gemessenen Maximalspannung $U_{\text{Rms}(1/2)}$		
U _{Sig}	Netzsignal-Spannung (RMS). Das Signal ist eine Signalhäufung, das häufig bei nichtharmonischen Frequenzen zur Remote-Steuerung von Anlagen genutzt wird. Details s. 5.2.9.		

2 Beschreibung

2.1 Vorderseite

Abbildung 2.1: Bedienoberfläche

Anordnung Bedienoberfläche:

1.	LCD	Grafikdisplay mit LED-Hintergrundbeleuchtung, 320 x 200 Pixel.		
2.	F1 – F4	Funktionstasten.		
3.	PFEIL-Tasten	Cursorbewegung und Parameterauswahl.		
4.	ENTER-Taste	Zur Bestätigung neuer Einstellungen, Aktivierung eines Untermenüs.		
5.	ESC-Taste	Beenden eines Vorgangs und Verlassen eines Untermenüs.		
6.	LIGHT-Taste	LCD-Hintergrundbeleuchtung ein oder ausschalten (die Hintergrundbeleuchtung schaltet sich bei Tasten- inaktivität nach 15 Minuten automatisch aus). Wenn die Taste <i>LIGHT</i> länger als 1,5 Sekunden gedrückt wird, wird das CONTRAST-Menü angezeigt. Der Kontrast kann mit den Tasten <i>LINKS</i> und <i>RECHTS</i> eingestellt werden.		
7.	Taste ON-OFF (EIN-AUS)	Schaltet das Instrument ein oder aus.		

2.2 Anschlussplatte

\land Warnung!

- Verwenden Sie ausschließlich Sicherheitsmessleitungen!
- Die maximal zulässige Spannung zwischen den Eingangsklemmen und Masse beträgt 1000 V_{RMS}!

Abbildung 2.2: Obere Anschlussplatte

Anordnung obere Anschlussplatte:

- 1 Eingangsklemmen Stromwandler (I_1, I_2, I_3, I_N) .
- 2 Anschlussklemmen Spannungseingänge (L₁, L₂, L₃, N, GND).

Abbildung 2.3: Seitliche Anschlussplatte

Anordnung seitliche Anschlussplatte:

- 1 Buchse für externe Stromversorgung.
- 2 Stecker für serielle PS-2 RS-232/GPS-Schnittstelle.
- 3 USB/GPRS Stecker.

2.3 Ansicht von unten

Abbildung 2.4: Ansicht von unten

Anordnung der Elemente auf der Bodenplatte:

- 1. Batteriefach.
- 2. Batteriefachschraube (ist zum Auswechseln der Batterie abschrauben).
- 3. Seriennummernschild.

2.4 Zubehör

2.4.1 Standardzubehör

Tabelle	2.1: Pou	/erQ4 / Po	verQ4 Plus	Standard	-Zubehörteile
labolio	2.1.1 00			olunduru	Zuberioriene

Beschreibung	Stück
Flexible Stromzange 3000 A / 300 A / 30 A (A 1227)	4
Temperaturfühler (A 1354)	1
Prüfspitze, rot	2
Prüfspitze (CAT II), rot	3
Prüfspitze (CAT II), schwarz	1
Krokodilklemme, rot	3
Krokodilklemme, schwarz	1
Krokodilklemme, grün	1
Spannungsmesskabel, rot	3

Beschreibung	Stück
Spannungsmesskabel, schwarz	1
Spannungsmesskabel, grün	1
USB-Kabel	1
RS232-Kabel	1
12V / 1,2A-Netzteil	1
NiMH-Akku, Typ HR 6 (AA)	6
Gepolsterte Tragetasche	1
Betriebsanleitung für PowerQ4 / PowerQ4 Plus	1
CD-ROM – für PowerQ4 / PowerQ4 Plus	
 PC-Software PowerView v2.0 mit Bedienungsanleitung 	
Betriebsanleitung für PowerQ4 / PowerQ4 Plus	
Handbuch "Modern Power Quality Measurement Techniques" (Modernen Netzqualität-Messverfahren)	

2.4.2 Optionales Zubehör

Bestellnr.	Beschreibung		-	
A 1020	Kleine gepolsterte Tragetasche			
A 1033	Stromzange 1000 A / 1 V	4	and the second s	Care -
A 1037	Stromwandler 5 A / 1 V	A 1020	A 1037	A 1069, A 1122
A 1039	Anschlusskabel für Stromzange	*		
A 1069	Miniaturstromzange 100 A / 1 V			
A 1122	Miniaturstromzange 5 A / 1 V	A 1022		
A 1179	Flexible 3-Phasen-Stromzangen	A 1055	S 2014	S 2015
	2000 A / 200 A / 20 A			
S 2014	Sicherungsadapter	-		A 1279
S 2015	Sicherheits-Flachklemmen	A 1039	A 1179	
A 1281	Stromzangen 5 A / 100 A / 1000 A		G	
A 1355	GPS-Empfänger ⁴			
A 1356	GPRS-Modem ¹			
		A 1356	A 1355	

⁴ nur PowerQ4 Plus-Option

3 Bedienung des Instruments

Dieser Abschnitt beschreibt die Bedienung des Instruments. Die Bedienoberfläche des Instruments besteht aus einem LCD-Grafikdisplay und einem Tastenfeld. Messdaten und der Gerätestatus werden auf dem Display angezeigt. Die wichtigsten Symbole des Displays und die Beschreibung der Tastenfunktionen werden in der folgenden Abbildung gezeigt.

Abbildung 3.1: Beschreibung der Anzeige-Symbole und Tasten

Während einer Messung können zahlreiche Symbole angezeigt werden. Die meisten Bildschirme haben gemeinsame Beschriftungen und Symbole. Sie werden in der folgenden Abbildung gezeigt.

Abbildung 3.2: Gemeinsame Displaysymbole und Beschriftungen während der Durchführung von Messungen

3.1 Hauptmenü des Instruments

Nach Einschalten des Instruments wird das "MAIN MENU" (HAUPTMENÜ) eingeblendet. Von diesem Menü aus können alle Instrumentenfunktionen ausgewählt werden.

Abbildung 3.3: "HAUPTMENÜ"

Tabelle 3.1: Symbole und	Abkürzungen des	Messgerät-Bildschirms
·····	J	

	 Batteriestatus Animiertes Symbol – zeigt an, dass die Batterie geladen wird Statisches, nicht animiertes Symbol – Ladezustand der Batterie wird angezeigt
ŀ	Zeigt, dass das Ladegerät am Instrument angeschlossen ist
	GPS-Modulstatus (Optionales Zubehörteil A 1355)
₿?	GPS-Modul erfasst, gibt jedoch ungültige Zeit- und Positionsdaten aus (Suche nach Satelliten oder Satellitensignal zu schwach)
9	GPS-Zeit gültig – gültiges Satelliten-GPS-Zeitsignal)

0 ₂	GPRS-Modemstatus (Optionales Zubehörteil A 1356)
•	GPRS in Initialisierungsmodus (Details siehe Abschnitt 4.2.6)
12	GPRS-Modem bereit, Anwenderruf entgegenzunehmen
I	(Details siehe Abschnitt 4.2.6)
	GPRS-Kommunikation läuft (Details siehe Abschnitt 4.2.6)
12:58:24	Aktuelle Zeit und aktuelles Datum
24.11.08	

Tabelle 3.2: Tastenfunktionen

3.1.1 Hauptfunktionen des Instruments

Durch Drücken einer ENTER-Funktion kann der Anwender eine von vier Funktions-Untergruppen auswählen:

- Messungen Grundlegende Mess-Bildschirme,
- Recorder Setup und Ansicht verschiedener Messaufzeichnungen,
- Messungssetup Vorgabe von Messparametern / -Abläufen,

• Allgemeines Setup – Konfigurieren oder Prüfen anderer Instrumentenparameter. Liste aller Untermenüs auf der folgenden Abbildung.

Abbildung 3.4: Menü Messungen

Abbildung 3.6: Menü Messungssetup

Abbildung 3.5: Menü Recorder

Abbildung 3.7: Menü Allgemeines Setup

3.2 Menüs U, I, f

Im Menü "U, I, f" können alle wichtigen Parameter für Spannung, Strom und Frequenz betrachtet werden. Messergebnisse können tabellarisch als METER (MESSWERTE) und grafisch als SCOPE (MESSBEREICH) und TREND angezeigt werden. Die TREND-Ansicht ist nur im Betriebsmodus RECORDING (AUFZEICHNEN) aktiviert. Einzelheiten, s. 3.9.

3.2.1 Meter-Anzeige

Mit Aktivieren des Menüs U, I, f wird die tabellarische Anzeige U, I, f – METER eingeblendet (s. folgende Abbildung).

U,I,f - MET	TER	L1 💽 00:25	U,I,f	- METE	R		Σ 00
	U	I		L1	L2	L3	Ln
RMS	226.9 ∨	887.1 A					
THD	3.3 %	3.2 %	UL	227.2	228.9	228.6 ∨	0.3
CF	1.37	1.38	ThdU	2.8	3.0	2.7 %	
PEAK	379.1 V	1253 A		888 5	8927	906 3 A	34
MAX 1/2	269.1 ∨	3919 A	12	000.0	002.1		
MIN 1/2	160.2 ∨	850.3 A	Thdl	3.2	4.2	3.1%	266.6
Freq	49.968 Hz		f: •	49.972		Hz	
HOLD	RESET 123N	A SCOPE	H	OLD	FREQ	^{123N} ★∆	SCOP

Abbildung 3.8: Bildschirme mit Messtabellen U, I, f

In diesen Bildschirmen werden die Messwerte für aktuellen Leiterspannungen und -ströme angezeigt. Die Symbole und Abkürzungen, die in diesem Menü verwendet werden, werden in der folgenden Tabelle erklärt.

Tabelle 3.3: Symbole und Abk	ürzungen des	Messgerät-Bildschirms
------------------------------	--------------	-----------------------

L1 L2 L3 L12 L23 L31 N A A	Aktuellen Wert des jeweiligen Kanals anzeigen.
	Strom-Recorderstatus
	RECORDER ist aktiv
	RECORDER beschäftigt (holt Daten aus Speicher)
	RECORDER ist nicht aktiv
20:45	Aktuelle Zeit des Instruments
RMS	Echt-Effektivwert U _{Rms} und I _{Rms}
THD	Gesamtklirrfaktor (Total Harmonic Distortion, Oberwellengehalt) THD $_{\rm U}$ und THD $_{\rm I}$
CF	Crest-Faktor (Scheitelfaktor) Cf _U und Cf _I
PEAK	Scheitelwert U _{Pk} und I _{Pk}
MAX 1/2	Maximalwerte für Spannung U _{Rms(1/2)} und Strom I _{½Rms} , gemessen nach Betätigen der Taste RESET (Taste: F2)
MIN 1/2	Minimalwerte für Spannung U _{Rms(1/2)} und Strom I _{½Rms} , gemessen nach Betätigen der Taste RESET (Taste: F2)
f	Frequenz auf Referenzkanal

Hinweis: Bei einem AD-gewandelten Strom- und Spannungswert werden die Werte farblich invertiert dargestellt 250,4 V.

Hinweis: Falls der Phasenstrom- und der Spannungswert nicht innerhalb einer Spanne von 10% ÷ 150% liegen, werden die Werte invertiert farblich dargestellt 250.4 V.

Tabelle 3.4: Tastenfunktionen

		Momentanwert der Wellenform:
F1	HOLD	Festhalten (Hold) der Messung in der Anzeige
	SAVE	Save (Speicherung) der Messung im Speicher
	RESET	Reset der Werte MAX $\frac{1}{2}$ und MIN $\frac{1}{2}$ ($U_{Rms(1/2)}$ und $I_{\frac{1}{2}Rms}$)
F2	f	Anzeige des Frequenzverlaufs (nur während des Aufzeichnungsmodus möglich)
	1 23N人∆	Anzeige der Messungen für Phase L1
	1 2 3N↓∆	Anzeige der Messungen für Phase L2
	12 3 N↓∆	Anzeige der Messungen für Phase L3
	123 N ⊥∆	Anzeige der Messung für Nullkanal
	^{123N} 人∆	Zusammenfassung aller Phasenmessungen
	123N人 <u>人</u>	Anzeige der Spannungsmessungen von Phase zu Phase
	METER	Umschalten zur Ansicht METER (MESSWERTE).
F4	SCOPE	Umschalten zur Ansicht SCOPE (MESSBEREICH)
	TREND	Umschalten zur Ansicht TREND (VERLAUF) (nur während des Aufzeichnungsmodus möglich)
ESC		Rückkehr zum Menübildschirm "MEASUREMENTS".

3.2.2 Scope (Messbereich)

Es werden verschiedene Kombinationen von Spannungs- und -Stromwellenformen angezeigt.

Abbildung 3.9: Spannung Wellenform

Abbildung 3.10: Strom Wellenform

U,I,f - SCO	PE		00:13
U12: 403	.2V I1:	91.12 A	
▶ 1203U 601.5A			
	``	\wedge	\sim
A			
$\backslash \checkmark$	$(\searrow$	$\sim 1^{>}$	-/ \
	\sim	^ر ر	
Ûns			62 . 5ms
HOLD	U+I 🗤	123	METER

Abbildung 3.11: Spannung und Strom Wellenform (Einzelmodus)

Abbildung 3.12: Spannung und Strom Wellenform (Dualmodus)

	Strom-Recorderstatus
	RECORDER ist aktiv
	RECORDER beschäftigt (holt Daten aus Speicher)
	RECORDER ist nicht aktiv
20:45	Aktuelle Zeit des Instruments
Up	Echt-Effektivwert der Phasenspannung:
p: [13, N]	U _{1Rms} , U _{2Rms} , U _{3Rms} , U _{NRms}
Upg	Echt-Effektivwert der (Leiter-) Spannung Phase zu Phase:
p,g: [1, 2, 3]	U _{12Rms} , U _{23Rms} , U _{31Rms}
lp	Echt-Effektivwert des Stroms:
p: [13, N]	I _{1Rms} , I _{2Rms} , I _{3Rms} , I _{NRms}
Thd	Gesamtklirrfaktor für die angezeigte Größe (THD _U bzw. THD _I)
f	Frequenz auf Referenzkanal

Tabelle 3.6: Tastenfunktionen

		Momentanwert der Wellenform:
	HOLD	Festhalten (Hold) der Messung in der Anzeige
	SAVE	Save (Speicherung) der Messung im Speicher
		Auswählen der anzuzeigenden Wellenform:
_	U	Spannungswellenform anzeigen
F2	I VH	Stromwellenform anzeigen
	U+I M	Spannungs- und Stromwellenform (Einzeldiagramm) anzeigen
	U/I V	Spannungs- und Stromwellenform (Dualdiagramm) anzeigen

		Auswählen zwischen den Ansichten Phase, Neutral, Alle-Phasen und Leitung:			
	123N人	Anzeige der Wellenformen für Phase L1			
F3	1 2 3N人	Anzeige der Wellenformen für Phase L2			
	12 3 N人	Anzeige der Wellenformen für Phase L3			
	123 N 人	Anzeige der Wellenform für Nullkanal			
	123N人	Zusammenfassung aller Phasen-Wellenformen			
	METER	Umschalten zur Ansicht METER (MESSWERTE)			
F4	SCOPE	Umschalten zur Ansicht SCOPE (MESSBEREICH)			
	TREND	Umschalten zur Ansicht TREND (VERLAUF) (nur während des Aufzeichnungsmodus möglich)			
ENTER	Auswählen, welche Wellenform vergrößert / verkleinert werden soll (nur bei U/I oder U+I)				
	Vertikalen Zoomfaktor einstellen				
	Horizontalen Zoomfaktor einstellen				
FSC	Beenden de	es Festhaltens (HOLD) des Bildschirms ohne Speichern			
	Rückkehr z	um Menübildschirm "MEASUREMENTS".			

3.2.3 Ansicht Trend (Verlauf)

Bei aktivem RECORDER ist die Ansicht TREND (VERLAUF) verfügbar (wie man den Recorder (Aufzeichnungsmodus) startet, wird in 3.9 erklärt.

Spannungs- und Stromtrends

Strom- und Spannungstrends können mithilfe der Cycling (Durchlauf-) Funktionstaste F4 (METER-SCOPE-TREND) beobachtet werden.

Abbildung 3.13: Spannungstrend

Abbildung 3.14: Spannungs- und Stromtrend (Einzelmodus)

U,I,f 1	ſRI	END			01:48
U1	Ŧ	230.9) V		
11	Ŧ	903.4	1 A		
▲ 241.9 V	T	183.0 V 🔅	5 947.1A	▼ 714.5 A	t: 00D 00:03:43
		_			/r
		-			/
Z00	M	U	VI ∪	123NJ	METER

Abbildung 3.15: Spannungsund Stromtrend (Dualmodus)

U,I,f TRI	END					01:46
11 X	900.0	А	13	¥	919.7	Α
l2 X	904.5	А	IN	¥	3.4	Α
▲ 920.5 A 🗴	892.1A				t: 00D 00	D:01:38
						~~~ <mark>13</mark> ~~~12 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ZOOM		V	12	3 N <b>X</b>	ME	TER

Abbildung 3.16: Trends alle Ströme

Tabelle 3.7: Symbole und	Abkürzungen des	Messgerät-Bildschirms
--------------------------	-----------------	-----------------------

	Strom-Recorderstatus:
۲	RECORDER ist aktiv
	RECORDER beschäftigt (holt Daten aus Speicher).
20:45	Aktuelle Zeit des Instruments
Up, Upg p: [13; N]	Maximal- ( $\mathbf{I}$ ), Mittel- ( $\mathbf{I}$ ) und Minimal- ( $\mathbf{I}$ ) Wert der Phasenspannung U _{pRms} bzw. Leiterspannung U _{pgRms} für das zuletzt gemessene Zeitintervall (IP)
lp	Maximal- (∡), Mittel- (≵) und Minimal- (ੲ) Wert des Stromes I _{pRms} für
p: [13, N]	das zuletzt gemessene Zeitintervall (IP)
t: 00D 00:13:23	Zeit Strom-RECORDER (Tage Stunden:Min.:Sek.)
▲230.6 V <b>▼</b> 225.3 V	Maximale und minimale aufgezeichnete Spannung
<b>▲</b> 947.1A <b>⊻</b> 0.0 A	Maximaler und minimaler aufgezeichneter Strom

#### Tabelle 3.8: Tastenfunktionen

F1	Z00M-+ Z00M+-	Vergrößern Verkleinern
		Auswählen zwischen den folgenden Optionen:
	U	Spannungstrend (-verlauf) anzeigen
F2	I UH	Stromtrend (-verlauf) anzeigen
	U+I M	Spannungs- und Stromtrend (Einzelmodus) anzeigen
	U/I V	Spannungs- und Stromtrend (Dualmodus) anzeigen
F3		Auswählen zwischen Phase, Neutral, Alle-Phasen und Ansicht:
	123N人	Anzeige des Trends (Verlaufs) für Phase L1
	1 <b>2</b> 3N人	Anzeige des Trends (Verlaufs) für Phase L2
	123N人	Anzeige des Trends (Verlaufs) für Phase L3

	123 <b>N</b> 人	Anzeige des Trends (Verlaufs) für Neutral					
	123N <b>人</b>	3N人 Zusammenfassung aller Phasentrends					
	METER	Umschalten zur Ansicht METER (MESSWERTE).					
F4	SCOPE	Umschalten zur Ansicht SCOPE (MESSBEREICH)					
	TREND	Umschalten zur Ansicht TREND (VERLAUF)					
ESC	Rückkehr zu	ım Menübildschirm "MEASUREMENTS".					

#### Frequenzverlauf

Im Bildschirm METER (MESSWERTE) kann der Frequenzverlauf durch Betätigen der Funktionstaste F2 eingeblendet werden.

U,I,F TREND  I 01:58							
freq	T	49.95	Hz	freq	X	49.95	Hz
freq	¥	49.95	Hz				
▲ 49.99	<b>▼</b> 43	9.95				t: 00D 00	):03:01
			_		-		
Z00	ЭM					MI=	TER

Abbildung 3.17: Frequenzverlauf U, I, f

Tabelle 3.9: St	vmbole und	Abkürzunaen	des Messa	erät-Bildschirms

	Strom-Recorderstatus:
	RECORDER ist aktiv
	RECORDER beschäftigt (holt Daten aus Speicher)
20:45	Aktuelle Zeit des Instruments
f	Maximal- (耳), Mittel- (閨) und Minimal- (囯) Wert der Frequenz am Synchronisierungskanal für das zuletzt aufgezeichnete Zeitintervall (IP)
t: 00D 00:13:23	Zeit Strom-RECORDER (Tage Stunden:Min.:Sek.)
▲49.99 ▲49.95	Maximal- und Minimalfrequenz beim angezeigten Diagramm

#### Tabelle 3.10: Tastenfunktionen

F1	ZOOM-+VergrößernZOOM+-Verkleinern
F4	METER Rückkehr zur Ansicht METER (MESSWERTE)
ESC	Rückkehr zum Menübildschirm "MEASUREMENTS".

## 3.3 Leistungsmenü

Im Menü POWER (LEISTUNG) zeigt das Instrument die gemessenen Leistungsparameter. Die Ergebnisse können tabellarisch als METER (MESSWERTE) und grafisch als TREND (VERLAUF) betrachtet werden. Die Ansicht TREND (VERLAUF ist nur bei aktivem RECORDER aktiv. Im Bereich 3.9 finden Sie Anweisungen zum Start des Recorders. Zum Verständnis der Bedeutung der einzelnen Leistungsparameter, s. Abschnitte 5.1.5 und 5.1.6.

#### 3.3.1 Meter-Anzeige

Durch Aktivierung des Menüs Power (Leistung) im Menü Measurements (Messungen) wird die tabellarische Ansicht POWER – METER eingeblendet *(s. folgende Abbildung)*. Die Ansicht METER (MESSWERTE) zeigt die Signaturen für Leistung, Spannung und Strom.

POWER METER 人 🗵 00:35						
	L1	L2	L3	Total		
Р	10.75	10.92	-22.06	- 0.39 kW		
Q	18.69	-18.72	0.67	0.64 k ^V Ar		
s	21.56	21.67	22.07	0.75 k ^v A		
pf	+0.49i	+0.50c	-0.99c	-0.52c		
dpf	+0.49i	+0.50c	-1.00c			
U	234.5	235.8	235.8	v		
•	91.93	91.90	93.61	A		
HO	LD		123,7₽			

Abbildung 3.18: Zusammenfassung der Leistungsmessungen

POWER I	METER			L1 🖻 00:36
Р	10.89	k₩	pf	+0.50 i
Q	18.85	k ^V Ar	dpf	+0.49i
s	21.77	к ^V A	TAN	
	U			I
RMS	235.8	V		92.33 A
RMS THD	235.8 8.2	V V		92.33 A 4.44 A
RMS THD THD	235.8 8.2 3.4	V V %		92.33 A 4.44 A 4.8 %
RMS THD THD CF	235.8 8.2 3.4 1.37	V V %		92.33 A 4.44 A 4.8 % 1.40

Abbildung 3.19: Detaillierte Leistungsmessung an Phase L1

Die Symbole und Abkürzungen, die in den Bildschirmen METER (MESSWERTE) verwendet werden, werden in der folgenden Tabelle erklärt.

Tabelle 3 11. S	vmhole und	Ahkürzungen	des Messa	erät-Rildschirms
	ynnbole unu	Abraizangen	ues messy	sial-Dilusci ili ilis

L1 L2 L3 人	Aktuellen Wert des jeweiligen Kanals anzeigen.
	Strom-Recorderstatus:
۲	RECORDER ist aktiv
	RECORDER beschäftigt (holt Daten aus Speicher)
	RECORDER ist nicht aktiv
20:45	Aktuelle Zeit des Instruments
P, Q, S	Augenblickliche Wirkleistung (P), Blindleistung (Q) und Scheinleistung (S)
PF, DPF	Augenblicklicher Leistungsfaktor (PF) und Leistungsfaktorverschiebung ( $\cos \phi$ )
U	Echt-Effektivwert U _{Rms}
	Echt-Effektivwert I _{Rms}

RMS	Echt-Effektivwert U _{Rms} und I _{Rms}
THD	Gesamtklirrfaktor (Total Harmonic Distortion, Oberwellengehalt) $\text{THD}_{\text{U}}$ und $\text{THD}_{\text{I}}$
CF	Crest-Faktor (Scheitelfaktor) Cf _U und Cf _I

#### Tabelle 3.12: Tastenfunktionen

F1		Momentanwert der Wellenform:								
	HOLD	Festhalten (Hold) der Messung in der Anzeige								
	SAVE	Save (Speicherung) der Messung im Speicher								
		Auswählen zwischen den Ansichten Phase, Neutral, Alle- Phasen und Leitung:								
	123人台	Anzeige der Messungen für Phase L1								
F3	1 <b>2</b> 3人∆	Anzeige der Messungen für Phase L2								
	12 <b>3</b> ∆∆	Anzeige der Messungen für Phase L3								
	¹²³ 人▲	Zusammenfassung aller Phasenmessungen								
	123人人	Anzeige der Spannungsmessungen von Phase zu Phase								
	METER	Umschalten zur Ansicht METER (MESSWERT) (nur während des Aufzeichnungsmodus möglich)								
	TREND	Umschalten zur Ansicht TREND (VERLAUF) (nur während des Aufzeichnungsmodus möglich)								
ESC		Beenden des Festhaltens (HOLD) des Bildschirms ohne Speichern Rückkehr zum Menübildschirm "MEASUREMENTS".								

### 3.3.2 Ansicht Trend (Verlauf)

Währen der aktiven **Aufzeichnung** ist die Ansicht **TREND** (VERLAUF) verfügbar (wie man den Recorder (Aufzeichnungsmodus) startet, wird in 3.9 erklärt.



Abbildung 3.20: Bildschirm Leistungsverlauf (Trend)

Tabelle 3.13: Symbole und Abkürzungen des Messgerät-Bildschirms



Strom-Recorderstatus RECORDER ist aktiv RECORDER beschäftigt (holt Daten aus Speicher)

	Gewählten Leistungsmodus anzeigen:
Mot	Leistungsdaten der verbrauchten (+) Leistung werden angezeigt
Gen	Leistungsdaten der erzeugten (-) Leistung werden angezeigt
20:45	Aktuelle Zeit des Instruments
Pp±, Pt±	Maximal- ( $\mathbf{I}$ ), Mittel- ( $\mathbf{I}$ ) und Minimalwert ( $\mathbf{I}$ ) der verbrauchten ( $P_1^+, P_2^+, P_3^+, P_{tot}^+$ ) oder erzeugten ( $P_1^-, P_2^-, P_3^-, P_{tot}^-$ ) Wirkleistung für das zuletzt aufgezeichnete Zeitintervall (IP)
p: [13]	
Qip±, Qit±	Maximal- ( $\mathbf{I}$ ), Mittel- ( $\mathbf{I}$ ) und Minimal- ( $\mathbf{I}$ ) Wert der verbrauchten $(Q_{i1}^+, Q_{i2}^+, Q_{i3}^+, Q_{itot}^+)$ oder erzeugten $(Q_{i1}^-, Q_{i2}^-, Q_{i3}^-, Q_{itot}^-)$ induktive Blindleistung $(Q_{i1}^+, Q_{i2}^+, Q_{i3}^+, Q_{itot}^+)$ für das zuletzt aufgezeichnete
p: [13]	Zeitintervall (IP)
Qcp±, Qct±	Maximal- ( $\mathbf{I}$ ), Mittel- ( $\mathbf{I}$ ) und Minimal- ( $\mathbf{I}$ ) Wert der verbrauchten ( $Q_{c1}^+$ , $Q_{c2}^+$ , $Q_{c3}^-$ , $Q_{ctot}^+$ ) oder erzeugten ( $Q_{c1}^-$ , $Q_{c2}^-$ , $Q_{c3}^-$ , $Q_{ctot}^-$ ) kapazitiven Blindleistung ( $Q_{c1}^{\pm}$ , $Q_{c2}^{\pm}$ , $Q_{c3}^{\pm}$ , $Q_{ctot}^{\pm}$ ) für das zuletzt
p: [13]	aufgezeichnete Zeitintervall (IP)
Sp±, St±	Maximal- ( $\mathbf{I}$ ), Mittel- ( $\mathbf{I}$ ) und Minimal- ( $\mathbf{I}$ ) Wert der verbrauchten Scheinleistung ( $S_1^+$ , $S_2^+$ , $S_3^+$ , $S_{tot}^+$ ) oder erzeugten Scheinleistung ( $S_1^-$ , $S_2^-$ , $S_3^-$ , $S_{tot}^-$ ) für das zuletzt aufgezeichnete Zeitintervall (IP)
p: [13]	$(\mathbf{S}_1, \mathbf{S}_2, \mathbf{S}_3, \mathbf{S}_{\text{tot}})$ for this zuleizi angezeichnete zeitinterval (ii )
PFip±, PFit±	Maximal- ( $\mathbf{I}$ ), Mittel- ( $\mathbf{I}$ ) und Minimal- ( $\mathbf{I}$ ) Wert des induktiven Leistungsfaktors (1. Quadrant: $PF_{i1}^+$ , $PF_{i2}^+$ , $PF_{i3}^-$ , $PF_{itot}^+$ und
p: [13]	3. Quadrant: PF _{i1} , PF _{i2} , PF _{i3} , PF _{itot} ) für das zuletzt aufgezeichnete Zeitintervall (IP)
PFcp±, PFt±	Maximal- ( $\mathbf{I}$ ), Mittel- ( $\mathbf{I}$ ) und Minimal- ( $\mathbf{I}$ ) Wert des kapazitiven Leistungsfaktors (4. Quadrant: $PF_{c1}^+$ , $PF_{c2}^+$ , $PF_{c3}^-$ , $PF_{ctot}^+$ und
p: [13]	2. Quadrant: $PF_{c1}$ , $PF_{c2}$ , $PF_{c3}$ , $PF_{ctot}$ ) für das zuletzt aufgezeichnete Zeitintervall (IP)
t: 00D 00:13:23	Zeit Strom-RECORDER (Tage Stunden:Min.:Sek.)
<b>X</b> 381.7 kW X 0.0 kW	Maximale und minimale aufgezeichnete Größe

#### Tabelle 3.14: Tastenfunktionen

F1	ZOOM++VergrößernZOOM+-Verkleinern
F2 Drücken & halten	Wechseln zwischen der Parameteransicht der verbrauchten und der erzeugten Leistung: <u>Measurement source type</u> <u>Motor</u> <u>Generator</u>
F2	Auswählen zwischen den Trends (Verläufen) zahlreicher Parameter:
	P 🤉 🔪 Wirkleistung
	Qi 🔍 Induktive Blindleistung
	Qc S Kapazitive Blindleistung
	S PFI Scheinleistung

	PFi PFc	Induktiver Leistungsfaktor							
	PFc DPFi 🔪	Kapazitiver Leistungsfaktor							
	DPFi DPFc	Induktiver Verschiebungsfaktor (cos φ)							
	DPFc P	Kapazitiver Verschiebungsfaktor (cos φ)							
		Auswählen zwischen den Trend-Diagrammen für einzelne Phase, alle Phasen und Summe							
	<b>1</b> 23人T	Leistungsparameter für Phase L1							
F3	1 <b>2</b> 3人T	Leistungsparameter für Phase L2 Leistungsparameter für Phase L3							
	12 <b>3</b> 人T								
	¹²³ 人T	Leistungsparameter L1, L2 und L3 in demselben Diagramm							
	123人 <b>T</b>	Leistungsparameter gesamt							
	METER	Umschalten zur Ansicht METER (MESSWERT) (nur während des Aufzeichnungsmodus möglich)							
	TREND	Umschalten zur Ansicht TREND (VERLAUF) (nur während des Aufzeichnungsmodus möglich)							
ESC	Rückkehr :	zum Menübildschirm "MEASUREMENTS".							

## 3.4 Menü Energy (Energie)

Im Menü Energy (Energie) zeigt das Instrument den Status der Energiezähler. Die Ergebnisse können in tabellarischer Form als METER (MESSWERTE) angezeigt werden. Zur Darstellung der Daten in Diagrammform als TREND (VERLAUF) darzustellen, müssen die Daten auf einen PC übertragen werden und mittels PowerView v2.0 visualisiert werden. Die Energiemessung ist nur bei aktiviertem RECORDER aktiv. Im Bereich 3.9 finden Sie Anweisungen zum Start des Recorders. Zum vollständigen Verständnis bestimmter Energieparameter siehe Abschnitt 5.1.7. Die Messwert-Bildschirme werden unten aufgeführt.

Υ	11:27	ENERGY	
Υ		TOTAL ENERGY	
L1 L2 L3		eP+ 000000362.768 kWh	
4 0297.77 0300.83 k ³	(Wh	eP- 000000000.000 kWh	
0000.00 0000.00 k ³	(Wh	eQ+ 00000023.570 kVArh	
0000.00 0000.16 k ^v	(VArh	eQ- 00000009.737 kVArł	
0000.06 0000.06 k	(VArh	Pt 5.370 MW Qt - 0.327	мΫ
11:18:10 11.11.09		Start: 11:34:20 11.11.0	)
0 h 08 m 51 s		Duration: 00 h 04 m 05 s	
123人T LST	T.IP	123人 <b>丁</b>	L

Abbildung 3.21: Energiezähler-Bildschirm

Tabelle 3.15: Symbole und Abkürzungen des Messgerät-Bildschirms

Strom-Recorderstatus: RECORDER ist aktiv RECORDER beschäftigt (holt Daten aus Speicher)

	RECORDER ist nicht aktiv
20:45	Aktuelle Zeit des Instruments
eP+	Verbrauchte Wirkenergie einer Phase (eP ₁ ⁺ , eP ₂ ⁺ , eP ₃ ⁺ ) oder Summe der verbrauchten Wirkenergie (eP _{tot} ⁺ )
eP-	Erzeugte Wirkenergie einer Phase $(eP_1, eP_2, eP_3)$ oder Summe der erzeugten Wirkenergie $(eP_{tot})$
	Verbrauchte Blindenergie einer Phase $(eQ_1^+, eQ_2^+, eQ_3^+)$ oder Summe der verbrauchten Blindenergie $(eQ_{tot}^+)$
eQ+	<b>Hinweis:</b> eQ+ stellt eine Messung über zwei Quadranten dar Für separate Messungen (eQ _i ⁺ , eQ _c ⁻ ) die Daten auf einen PC übertragen und Ergebnisse mittels PowerView v2.0 betrachten.
	Erzeugte Blindenergie einer Phase (eQ1, eQ2, eQ3) oder Summe der erzeugten Blindenergie (eQtot)
eQ-	<b>Hinweis:</b> eQ- stellt eine Messung über zwei Quadranten dar. Für eine Messung über vier Quadranten ( $eQ_i^-$ , $eQ_c^+$ ) die Daten auf einen PC übertragen und Ergebnisse mittels PowerView v2.0 betrachten.
Pp, Pt p: [13]	Momentane Wirkleistung einer Phase ( $P_1$ , $P_2$ , $P_3$ ) oder Summe der momentanen Wirkleistung $P_{tot}$
Qp, Qt p: [13]	Momentane Blindleistung (Q1, Q2, Q3, Qtot) oder Summe Qtot der Blindleistung
Start	Startzeit und -datum des Recorders
Duration (Dauer)	Aktuelle RECORDER-Zeit

#### Tabelle 3.16: Tastenfunktionen

		Auswählen Energiemes	zwischen sung	der	Einzelphasen-	und	Gesamt-					
	123人⊺	Energiepara	meter für P	hase l	_1							
F3	1 <b>2</b> 3人⊺	Leistungspa	Leistungsparameter für Phase L2									
	12 <b>3</b> 人T	123人T Leistungsparameter für Phase L3										
	¹²³ 人 ^T	Zusammenf	assung für o	die En	ergie aller Phase	en						
	^{123人} T	Energiepara	meter für S	umme	n							
	Umschalte	en zwischen Z	eitintervall:									
	LST.IP	Energieregis	ster für das	letzte	Intervall anzeige	n						
F4	CUR.IP	CUR.IP Energieregister für das aktuelle Intervall anzeigen										
	TOT EN	Energieregis	ster für die g	jesam	te Aufzeichnung	anzeig	gen					
ESC	Rückkehr	zum Menübild	lschirm "ME	ASUF	REMENTS".							

# 3.5 Harmonische / Interharmonische⁵-Menü

Harmonische ergeben sich als Summen von Spannungs- und Stromsignalen der Sinuskurven der Netzfrequenz und ihrer ganzzahligen Vielfachen. Die Netzfrequenz wird Grundfrequenz genannt. Die Sinuskurve mit der um den Faktor k höheren Grundfrequenz (wobei k ganzzahlig ist) wird Harmonische genannt und wird mit Phasenverschiebung und einer (einem Phasenwinkel) Amplitude für ein Grundfrequenzsignal angegeben. Wenn eine Signalzerlegung Fourier-Transformationsergebnisse mit einer Frequenz eines nicht ganzzahligen Vielfaches des Grundstroms ergibt, wird diese als interharmonische Frequenz und Komponenten mit einer solchen Frequenz als Interharmonische bezeichnet. Details, s. 5.1.8.

#### 3.5.1 Meter-Anzeige

Durch Aktivierung des Menüs HARMONICS (OBERWELLEN) aus dem Messungs-Menü heraus wird die tabellarische Darstellung HARMONICS – METER (OBERWELLEN - MESSWERTE) angezeigt *(s. folgende Abbildung)*. In diesem Bildschirm werden die Spannungs- und Strom-Harmonische, -Interharmonische sowie der Gesamtklirrfaktor THD (Total Harmonic Distortion, Oberwellengehalt) angezeigt.

HAF	RMON.	METE	R		. ►	11:41	INTE	RHAR	M. ME	TER		. ►	12:48
	U1	11	U2	12	U3	13		U1	11	U2	12	U3	13
	٧	А	V	Α	V	А		٧	А	V	А	V	А
RMS	229.8	1769	230.2	1766	230.1	1768	RMS	229.9	1769	229.7	1772	229.7	1767
	V	Α	V	Α	V	Α		%	%	%	%	%	%
THD	2.1	15.9	2.1	14.6	2.1	15.7	THD	1.2	1.0	1.2	1.1	1.2	1.2
h 1	229.7	1768	230.1	1766	230.0	1768	ih 1	0.3	0.3	0.3	0.3	0.2	0.3
h 2	0.3	0.9	0.3	2.1	0.4	3.7	ih 2	0.2	0.3	0.2	0.3	0.2	0.1
h 3	0.2	1.5	0.3	1.4	0.4	2.0	ih 3	0.3	0.3	0.3	0.2	0.3	0.3
h 4	0.2	2.1	0.4	1.8	0.4	3.4	ih 4	0.3	0.4	0.2	0.3	0.2	0.2
H	OLD	V-A	% 1:	23N人/	B	AR	H	DLD	%	V-A 🖣 12	23N人4	S   B	AR

Abbildung 3.22: Harmonische und Interharmonische Messwerttabelle

Die Symbole und Abkürzungen, die in den Bildschirmen METER (MESSWERTE) verwendet werden, werden in der folgenden Tabelle erklärt.

L1 L2 L3 L12 L23 L31 N A A	Aktuellen Wert des jeweiligen Kanals anzeigen.
	Strom-Recorderstatus:
	RECORDER ist aktiv
$\blacksquare$	RECORDER beschäftigt (holt Daten aus Speicher)
	RECORDER ist nicht aktiv
20:45	Aktuelle Zeit des Instruments
RMS	Echt-Effektivwert U _{Rms} und I _{Rms}

⁵ Messungen der Interharmonischen sind nur mit PowerQ4 Plus möglich

THD	Gesamtklirrfaktor (Harmonische und Interharmonische) THD _U und THD _I							
hn	Spannungs- bzw. Strom-Oberwellenkomponente / Interharmonische							
n: 050	Uhn bzw. Ihn der n. Ordnung							

#### Tabelle 3.18: Tastenfunktionen

E		Momentanwert der Wellenform:								
	HOLD	Festhalten (Ho	ld) de	r Messung in der An	zeige					
	SAVE	Save (Speicherung) der Messung im Speicher								
F2		Wechseln zwis Interharmonisc	chen he	Messungs-Ansicht H	larmonische /					
Drücken & halten				Measurement source type Harmonics Interharmonics						
F2	% V-A <b>`</b>	Stellt den Wert der Harmonischen / Interharmonischen als %- Anteil des ersten Oberwellen-(RMS-)Effektivwerts dar								
	V-A % `	Stellt die Werte	als E	ffektivgrößen (Volt, A	Ampere) dar					
	Auswählen zwischen den Ansichten für die Harmonische Interharmonischen von einzelne Phase, Neutral, Alle-Ph und Leitung:									
	<b>1</b> 23N人∆	Komponenten Phase L1	der	Harmonischen / Int	erharmonischen	für				
	1 <b>2</b> 3N人A	Komponenten Phase L2	der	Harmonischen / Int	erharmonischen	für				
F3	12 <b>3</b> N太∆	Komponenten Phase L3	der	Harmonischen / Int	erharmonischen	für				
	123 <b>N</b> 人Δ	Komponenten Nullleiterkanal	der	Harmonischen / Int	erharmonischen	für				
	^{123N} ★▲	Zusammenfass	sung c	ler Komponenten au	f allen Phasen					
	123N人 <u>人</u>	Komponenten Phase-Phase-S	der Spann	Harmonischen / Int ungen	erharmonischen	für				
	METER	Umschalten zu	r Ansi	cht METER (MESSV	VERTE)					
F4	BAR	Umschalten zu	r Ansi	cht BAR (BALKEN)						
	TREND	Umschalten zu des Aufzeichnu	r Ansi Ingsm	cht TREND (VERLA lodus möglich)	UF) (nur während	i				
	Navigieren	durch Oberweller	nkomp	oonenten (harmonisch	e / interharmonisc	he)				
ESC	Beenden d Rückkehr z	les Festhaltens ( zum Menübildscl	HOLE	)) des Bildschirms of MEASUREMENTS".	nne Speichern					

### 3.5.2 Histogramm (Balken)

Der Bildschirm Bar (Balkendiagramm) stellt die Werte anhand zweier Balken dar. Das obere Balkendiagramm zeigt die Spannungs-Oberwellen und das untere die Stromoberwellen.

HAR	MON. BAR	2		▶ 00:43	HAR	MON. BAF	2		01:29
U1:	224.7 V	ThdU:	3.4%	7.7 V	U1:	228.8 V	ThdU:	3.3%	7.6 V
11:	878.7 A	Thdl:	3.7%	33.3 A	11:	891.8 A	Thdl:	4.4%	39.5 A
				Þ					•
					п				
Π									
				L					
_					_				
HO			123N	METER				123N	TREND
110					110				Intento

Abbildung 3.23: Bildschirme Oberwellen-Histogramm

Die Symbole und Abkürzungen, die in den Bildschirmen BAR (BALKENDIAGRAMM) verwendet werden, werden in der folgenden Tabelle erklärt.

Tabelle 3.19: Symbole	und Abkürzungen des	Messgerät-Bildschirms
······································		

	Strom-Recorderstatus:
	RECORDER ist aktiv
$\mathbf{X}$	RECORDER beschäftigt (speichert Daten ab)
	RECORDER ist nicht aktiv
20:45	Aktuelle Zeit des Instruments
M	Ausgewählte Oberwellen-Komponente (harmonische / interharmonische) anzeigen
Up, Un p:13	Echt-Effektivwert der Phasen- oder Leitungsspannung U _{Rms}
lp, In	Echt-Effektivwert des Phasenstroms I _{Rms}
p:13	
ThdU	Gesamtspannungsklirrfaktor: THD _U
Thdl	Gesamtstromklirrfaktor: THD
hn/ihn	n. Spannung oder Oberwellenkomponente (harmonische / interharmonische)
n: 050	Uh _n / iUh _n oder Ih _n / iIh _n

#### Tabelle 3.20: Tastenfunktionen

F1		Momentanwert der Wellenform:
	HOLD	Festhalten (Hold) der Messung in der Anzeige
	SAVE	Save (Speicherung) der Messung im Speicher
F3		Auswählen zwischen der Darstellung für einzelne Phasen, Neutralleiter, Oberwellen-Balken

	123N	Komponenten Phase L1	der	Harmonischen / Interharmonischen	für				
	1 <b>2</b> 3N	Komponenten Phase L2	der	Harmonischen / Interharmonischen	für				
	12 <b>3</b> N	Komponenten Phase L3	der	Harmonischen / Interharmonischen	für				
	123 <b>N</b>	Komponenten Nullleiterkanal	der	Harmonischen / Interharmonischen	für				
	METER	Umschalten zu	r Ansi	cht METER (MESSWERTE)					
F4	BAR	Umschalten zu	r Ansi	cht BAR (BALKEN)					
	<b>TREND</b> Umschalten zur Ansicht TREND (VERLAUF) (nur während des Aufzeichnungsmodus möglich)								
ENTER	Cursor zwischen Spannungs- und Stromhistogramm umschalten								
	Amplitude des angezeigten Histogramms skalieren								
	Cursor zur Auswahl der Einzelbalken für Harmonische / Interharmonische								
ESC	Beenden des Festhaltens (HOLD) des Bildschirms ohne Speichern Rückkehr zum Menübildschirm "MEASUREMENTS".								

#### 3.5.3 Ansicht Trend (Verlauf)

Bei aktivem RECORDER ist die Ansicht TREND (VERLAUF) verfügbar (wie man den Recorder (Aufzeichnungsmodus) startet, wird in 3.9 erklärt. Spannungs- und Strom-Oberwellenkomponenten (Harmonische / Interharmonische) können mithilfe der Cycling (Durchlauf-) Funktionstaste F4 (METER-BAR-TREND) beobachtet werden.

HAR	М. Т	REND	H7	L1			01:35		HAR	М. Т	REND	iH5	L1			09:48
Uh	Ŧ	1.3	%	Uh	I	2.5	%		Uih	X	2.0	%	Uih	X	4.9	V
lh	Ŧ	1.4	%	lh	X	10.7	%		lih	Ŧ	2.1	%	lih	X	56.0	Α
<b>X</b> 1.4	<u> </u>	0.9 🔺 1.6	Y	0.9		t: 00D 0	D:21:53	1	<b>X</b> 2.4	<b>X</b> 0	.0 🗶 2.	5 <b>X</b>	0.0		t: 00D 01	:02:28
															Jonman	when
				~											7	
								1							N-MAR	mente
	www.www.www.www.														].	
Z0	OM	H 7	THD	1	2 3 N	ME	TER		Z00	)M+-	iH 5	THD	<b>\</b> 1 ²	2 3 N	ME	TER

Abbildung 3.24: Verlauftabelle Harmonische und Interharmonische

Tabelle 3.21: Symbole und Abkürzungen des Messgerät-Bildschirms

Strom-Recorderstatus:
RECORDER ist aktiv
RECORDER beschäftigt (holt Daten aus Speicher)

20:45	Aktuelle Zeit des Instruments
ThdU	Maximal- (革) und Mittel- (℥) Wert des Spannungsgesamtklirrfaktors THD _U für die ausgewählte Phase
ThdI	Maximal- (耳) und Mittel- (ኜ) Wert des Stromgesamtklirrfaktors THD⊢ für die ausgewählte Phase
Uh/Uih	Maximal- (耳) und Mittel- (ቿ) Wert der ausgewählten n-ten Oberwellen- spannung (Harmonische / Interharmonische) für die ausgewählte Phase
lh/lih	Maximal- (∡) und Mittel- (≵) Wert des ausgewählten n-ten Oberwellen- stroms (Harmonische / Interharmonische) für die ausgewählte Phase
t: 00D 00:13:23	Zeit Strom-RECORDER (Tage Stunden:Min.:Sek.)
▲ 1.4V ¥ 0.9V	Aufgezeichnete Maximal (革) und Minimal- (重) Größe
🗶 1.6 A 🗶 0.9 A	

Tabelle 3.22: Tastenfunktionen



Z00M-+ Vergrößern Z00M+-Verkleinern

Auswählen:

Max. 3 Oberwellen (Harmonische / Interharmonische) pro beobachteten Verlauf

Einheiten Harmonische / Interharmonische:

% der der ersten Oberwellen (Harmonischen / 0 Interharmonischen),



Absolutwerte (in Volt / Ampere) 0

	SELECT HARMONICS								
1	2	3	4	5	6	7	8	9	
10	11	12	13	14	15	16	17	18	
19	20	21	22	23	24	25	26	27	
28	29	30	31	32	33	34	35	36	
37	38	39	40	41	42	43	44	45	
46	47	48	49	50		%	۷.	A	

Auswählen zwischen den Trends (Verläufen) zahlreicher Parameter: Standardmäßig sind dies:

THD H3 Gesamtklirrfaktor für die ausgewählte Phase (THDU_p)

Oberwelle (Harmonische / Interharmonische) der 3. Ordnung H3 H5 für die ausgewählte Phase (U_ph₃)

Oberwelle (Harmonische / Interharmonische) der 5. Ordnung Η5 Η7 für die ausgewählte Phase (U_ph₅)

Oberwelle (Harmonische / Interharmonische) der 7. Ordnung H 7 THD für die ausgewählte Phase (U_ph₇)

Auswählen zwischen den Ansichten für die Oberwellen von einzelne Phase, Neutral, Alle-Phasen und Leitung:

Oberwellenkomponenten (Harmonische / Interharmonische) 123N für Phase L1 (U₁h_n)



Drücken & halten

F2

F3

	1 <b>2</b> 3N	Oberwellenkomponenten für Phase L2 (U ₂ h _n )	(Harmonische / Interharmonische)					
	12 <b>3</b> N	Oberwellenkomponenten für Phase L3 (U ₃ h _n )	(Harmonische / Interharmonische)					
	123 <b>N</b>	Oberwellenkomponenten für Nullleiterkanal (U _N h _n )	(Harmonische / Interharmonische)					
	METER	Umschalten zur Ansicht M	ETER (MESSWERTE)					
F4	BAR	Umschalten zur Ansicht BAR (BALKEN)						
	<b>TREND</b> Umschalten zur Ansicht TREND (VERLAUF) (nur während des Aufzeichnungsmodus möglich)							
ESC	Rückkehr zum Menübildschirm "MEASUREMENTS".							

Auswahl von Oberwellen (Harmonische / Interharmonische) für beobachteten Verlauf

Es können maximal 3 Harmonische / Interharmonische ausgewählt werden. F2-Taste im Bildschirm TREND drücken und gedrückt halten, für die Auswahl öffnet sich eine Tabelle. Beachten Sie, dass nur die aufgezeichneten Harmonischen / Interharmonischen ausgewählt werden können. Einstellung der Aufzeichnungsparameter siehe Abschnitt 3.9.



F4	SET Auswahl für Harmonische / Interharmonische in einer Tabelle treffen oder aufheben
	Cursortasten (Bewegen in der Tabelle)
ENTER	Auswahl von Oberwellen (Harmonische / Interharmonische) für beobachteten Verlauf bestätigen
ESC	Auswahl von Oberwellen (Harmonische / Interharmonische) für beobachteten Verlauf ohne Änderungen aufheben.

### 3.6 Flickermessung

Das Flickermeter (die Flickermessung) misst die menschliche Wahrnehmung des Effekts der Amplitudenmodulation auf die Netzspannung mithilfe einer Glühlampe. Im Menü Flickermeter (Flickermessung) zeigt das Instrument die gemessenen Flickerparameter. Die Ergebnisse können in Reiterform (METER) oder in Diagrammform (TREND) ausgegeben werden - nur aktiv, wenn RECORDER aktiv ist. Im Bereich 3.9 finden Sie Anweisungen zum Start der Aufzeichnung. Zum Verständnis der Bedeutung der einzelnen Parameter, s. Abschnitt 5.1.9.

### 3.6.1 Meter-Anzeige

Durch Aktivierung des Menüs FLICKERMETER aus dem Messungs-Menü heraus wird die tabellarische Darstellung FLICKERMETER angezeigt (*s. folgende Abbildung*).

FLICKERMETER D1:59				
	L1	L2	L3	
Urms	230.6	228.3	230.0 V	
Pst (1min)	0.575	0.764	0.464	
Pst	0.517	0.666	0.542	
Plt	2.090	2.305	1.338	
HOLD			TREND	

Abbildung 3.25: Bildschirm Flickermeter-Tabelle

Die Symbole und Abkürzungen, die in den Bildschirmen METER (MESSWERTE) verwendet werden, werden in der folgenden Tabelle erklärt.

Tabelle 3.24: Symbole und Abkürzunge	n des Messgerät-Bildschirms
--------------------------------------	-----------------------------

	Strom-Recorderstatus:
	RECORDER ist aktiv
X	RECORDER beschäftigt (holt Daten aus Speicher)
	RECORDER ist nicht aktiv
20:45	Aktuelle Zeit des Instruments
Urms	Echt-Effektivwert U _{Rms}
Pst(1min)	Kurzfristiges Flickern (1 Min.) P _{st1min}
Pst	Kurzfristiges Flickern (10 Min.) P _{st}
Plt	Langfristiges Flickern (2 h) P _{lt}
2.090	Werden die Messwerte invertiert farblich dargestellt, so sind sie ungültig (bei Überschreitung des Spannungsbereichs, Spannungsabfällen, niedrige Spannung etc.)

Tabelle 3.25: Tastenfunktionen

E1	Momentanwert der Wellenform:	
	HOLD Festhalten (Hold) der Messung in der Anzeige	
	SAVE Save (Speicherung) der Messung im Speicher	
F4	METER Umschalten zur Ansicht METER (MESSWERT) (nur während des Aufzeichnungsmodus möglich)	
	<b>TREND</b> Umschalten zur Ansicht TREND (VERLAUF) (nur während des Aufzeichnungsmodus möglich)	
ESC	Beenden des Festhaltens (HOLD) des Bildschirms ohne Speichern Rückkehr zum Menübildschirm "MEASUREMENTS".	
# 3.6.2 Ansicht Trend (Verlauf)

Bei aktivierter Aufzeichnung ist die Ansicht TREND (VERLAUF) verfügbar (wie man den die Aufzeichnung startet, wird in 3.9 erklärt. Flickerparameter können mithilfe der Cycling (Durchlauf-) Funktionstaste F4 (METER-TREND) beobachtet werden.

FLICKER TREND							02:05
pst1	T	0.578		pst1	X	0.578	
pst1	¥	0.578					
▲0.578	<b>X</b> 0,	495				t: 00D 00	):18:53
						5	
Z00	)M	PST	PLT	1 2 3	3人	ME	TER

Abbildung 3.26: Bildschirm Flickermeter-Verlauf.

Tabelle 3.26: Symbole und Abkürzungen des Messgerät-Bildschirms

	Strom-Recorderstatus:
٢	RECORDER ist aktiv
$\mathbf{X}$	RECORDER beschäftigt (holt Daten aus Speicher)
20:45	Aktuelle Zeit des Instruments
pstmp p: [13]	Maximal- ( $\mathbf{I}$ ), Mittel- ( $\mathbf{I}$ ) und Minimal- ( $\mathbf{I}$ ) Wert eines einminütigen Kurzzeitflickers P _{st1min} für Phasenspannungen U ₁ , U ₂ , U ₃ oder Leiterspannungen U ₁₂ , U ₂₃ , U ₃₁
pst <i>p</i> <i>p</i> : [13]	Maximal- ( $\mathbf{I}$ ), Mittel- ( $\mathbf{I}$ ) und Minimal- ( $\mathbf{I}$ ) Wert eines zehnminütigen Kurzzeitflickers P _{st} für Phasenspannungen U ₁ , U ₂ , U ₃ oder Leiterspannungen U ₁₂ , U ₂₃ , U ₃₁
plt <i>p</i> <i>p</i> : [13]	Maximal- ( $\mathbf{I}$ ), Mittel- ( $\mathbf{I}$ ) und Minimal- ( $\mathbf{I}$ ) Wert eines zweistündigen Langzeitflickers P _{lt} für Phasenspannungen U ₁ , U ₂ , U ₃ oder Leiterspannungen U ₁₂ , U ₂₃ , U ₃₁
t: 00D 00:13:23	Zeit Strom-RECORDER (Tage Stunden:Min.:Sek.)
▲0.57% ⊻0.495	Maximal und minimal aufgezeichnetes Flickern

#### Tabelle 3.27: Tastenfunktion

F1	Z00M-+	Vergrößern
	Z00M+-	Verkleinern
		Auswählen zwischen den folgenden Optionen:
	PST PLT	Kurzfristiges Flickern (10 Min.) P _{st} anzeigen
FZ	PLT PSTMIN	Langfristiges Flickern P _{lt}
	PSTMIN PST	Kurzfristiges Flickern (1 Min.) P _{st1min} anzeigen
		Auswählen zwischen den Trends (Verläufen) zahlreicher
F3		Parameter:

Ausgewählte Flickertrends (-verläufe) für Phase 1 anzeigen

- 2³ Ausgewählte Flickertrends (-verläufe) für Phase 2 anzeigen
- Ausgewählte Flickertrends (-verläufe) für Phase 3 anzeigen
- Ausgewählte Flickertrends (-verläufe) für alle Phasen (nur Mittelwert) anzeigen
- METER Umschalten zur Ansicht METER (MESSWERTE)
- **TREND** Umschalten zur Ansicht TREND (VERLAUF)

ESC

Rückkehr zum Menübildschirm "MEASUREMENTS".

# 3.7 Ansicht Phasendiagramm

In der Ansicht "Phase diagram" Phasendiagramm werden die Grundspannungen, ströme und Phasenwinkel des Netzes grafisch dargestellt. Diese Ansicht wird dringend empfohlen, um vor der Durchführung von Messungen zu prüfen, ob das Instrument korrekt angeschlossen ist. Beachten Sie, dass die meisten Messfehler durch falsch angeschlossene Instrumente entstehen (empfohlene Messmethoden, s. 4.1). In der Ansicht Phasendiagramm wird im Instrument Folgendes angezeigt:

- Grafische Darstellung der Spannungs- und Stromvektoren des gemessenen Systems,
- Asymmetrie des gemessenen Systems.

## 3.7.1 Der Bildschirm Phasendiagramm

Durch Aktivierung des Menüs "PHASE DIAGRAM" (PHASENDIAGRAMM) aus dem Messungsmenü MEASUREMENTS MENU heraus wird der folgende Bildschirm eingeblendet (*s. folgende Abbildung*).



Abbildung 3.27: Bildschirm Phasendiagramm.

Tabelle 3.28: Symbole und Abkürzungen des Messgerät-Bildschirms

	Strom-Recorderstatus:
٢	RECORDER ist aktiv
$\mathbf{X}$	RECORDER beschäftigt (holt Daten aus Speicher)
	RECORDER ist nicht aktiv
20:45	Aktuelle Zeit des Instruments

U1, U2, U3	Grundspannungen U _{1Fnd} , U _{2Fnd} , U _{3Fnd}
I1, I2, I3	Grundströme I _{1Fnd} , I _{2Fnd} , I _{3Fnd}
DPF	Verschiebungsfaktor (Displacement Factor) (cos $\phi$ ) für eine bestimmte
	Phase: DPF ₁ , DPF ₂ , DPF ₃
345.00	Zeigt die Strom- und Spannungsskalierung an.
1500A	Der Wert entspricht dem höchsten Strom- bzw. Spannungswert des
	Diagramms (d. h. der oberen horizontalen Linie).

Tabelle 3.29: Tastenfunktion

HOLDFesthalten (Hold) der Messung in der Anzeige Save (Speicherung) der Messung im SpeicherSAVESave (Speicherung) der Messung im SpeicherUAuswahl der Spannungen bei der Skalierung (mit Cursors)IUAuswahl des Stroms bei der Skalierung (mit Cursors)U-IUmschalten zum PhasendiagrammSYMUmschalten zum SymmetriediagrammTRENDUmschalten zur Ansicht TREND (VERLAUF) (nur während des Aufzeichnungsmodus möglich)Details des ausgewählten Ereignisses anzeigen.Amplitude des angezeigten Diagramms skalieren.	F1	Momentanwert der Wellenform:					
SAVESave (Speicherung) der Messung im SpeicherUAuswahl der Spannungen bei der Skalierung (mit Cursors)IAuswahl des Stroms bei der Skalierung (mit Cursors)U-IUmschalten zum PhasendiagrammUmschalten zum SymmetriediagrammUmschalten zur Ansicht TREND (VERLAUF) (nur während des Aufzeichnungsmodus möglich)Image: Complexity of the state		HOLD	HOLD Festhalten (Hold) der Messung in der Anzeige				
<ul> <li>Auswahl der Spannungen bei der Skalierung (mit Cursors)</li> <li>Auswahl des Stroms bei der Skalierung (mit Cursors)</li> <li>Auswahl des Stroms bei der Skalierung (mit Cursors)</li> <li>Unschalten zum Phasendiagramm</li> <li>Umschalten zum Symmetriediagramm</li> <li>Umschalten zur Ansicht TREND (VERLAUF) (nur während des Aufzeichnungsmodus möglich)</li> <li>Details des ausgewählten Ereignisses anzeigen.</li> <li>Amplitude des angezeigten Diagramms skalieren.</li> </ul>		SAVE	Save (Speicherung) der Messung im Speicher				
Image: Construction of the second stressImage: Construction of the second stressAuswahl des Stroms bei der Skalierung (mit Cursors)Image: Construction of the second stressImage: Construction of the second stressUmschalten zum PhasendiagrammImage: Construction of the second stressImage: Construction of the second stressUmschalten zum SymmetriediagrammImage: Construction of the second stressImage: Construction of the second stressUmschalten zum SymmetriediagrammImage: Construction of the second stressImage: Constructio	E2	U	Auswahl der Spannungen bei der Skalierung (mit Cursors)				
<ul> <li>U-I</li> <li>SYM</li> <li>TREND</li> <li>Umschalten zum Phasendiagramm</li> <li>Umschalten zum Symmetriediagramm</li> <li>Umschalten zur Ansicht TREND (VERLAUF) (nur während des Aufzeichnungsmodus möglich)</li> <li>Details des ausgewählten Ereignisses anzeigen.</li> <li>Amplitude des angezeigten Diagramms skalieren.</li> </ul>		I V	Auswahl des Stroms bei der Skalierung (mit Cursors)				
SYM       Umschalten zum Symmetriediagramm         TREND       Umschalten zur Ansicht TREND (VERLAUF) (nur während des Aufzeichnungsmodus möglich)         Details des ausgewählten Ereignisses anzeigen.         Amplitude des angezeigten Diagramms skalieren.		U-I	Umschalten zum Phasendiagramm				
TREND       Umschalten zur Ansicht TREND (VERLAUF) (nur während des Aufzeichnungsmodus möglich)         Image: Comparison of the state		SYM	Umschalten zum Symmetriediagramm				
des Aufzeichnungsmodus möglich)         Details des ausgewählten Ereignisses anzeigen.         Amplitude des angezeigten Diagramms skalieren.		TREND	Umschalten zur Ansicht TREND (VERLAUF) (nur während				
Details des ausgewählten Ereignisses anzeigen.         O O         Amplitude des angezeigten Diagramms skalieren.			des Aufzeichnungsmodus möglich)				
Amplitude des angezeigten Diagramms skalieren.	ENTER	Details des ausgewählten Ereignisses anzeigen.					
		Amplitude des angezeigten Diagramms skalieren.					
Beenden des Festhaltens (HOLD) des Bildschirms ohne Speichern	FSC	Beenden des	s Festhaltens (HOLD) des Bildschirms ohne Speichern				
Zurück zum MEASUREMENTS-Menü.	ESU	Zurück zum	MEASUREMENTS-Menü.				

## 3.7.2 Symmetriediagramm

Das Symmetriediagramm stellt die Spannungs- / Strom-Symmetrie bzw. -Asymmetrie des gemessenen Systems dar. Asymmetrie entsteht, wenn die RMS-Werte bzw. Phasenwinkel zwischen konsekutiven Phasen nicht gleich sind. Das Diagramm wird in der folgenden Abbildung gezeigt.

PHASE DIAGRAM			<b>D</b> 00:51
345.00	1500A	Uo:	0.2∨
U.		lo:	8.9A
		U+:	0.9∨
		I+:	3.6 A
U+		U-:	226.8∨
+		I-:	890.8A
		symU-	: <b>99.99%</b>
		symUo	: 22.22%
HOLD U			U-I

Abbildung 3.28: Bildschirm Symmetriediagramm

	Strom-Recorderstatus:
۲	RECORDER ist aktiv
	RECORDER beschäftigt (holt Daten aus Speicher)
	RECORDER ist nicht aktiv
20:45	Aktuelle Zeit des Instruments
U0	Nullsequenz-Spannungskomponente U ⁰
10	Nullsequenz-Stromkomponente I ⁰
U+	Positivsequenz-Spannungskomponente U ⁺
+	Positivsequenz-Stromkomponente I ⁺
U-	Negativsequenz-Spannungskomponente U ⁻
I-	Negativsequenz-Stromkomponente
symU-	Negativsequenz-Spannungsverhältnis u
syml-	Negativsequenz-Stromverhältnis i
symU+	Nullsequenz-Spannungsverhältnis u ⁰
syml-	Nullsequenz-Stromverhältnis i ⁰
345.00	Zeigt die Strom- und Spannungsskalierung an. Der Wert entspricht dem
1500A	höchsten Strom- bzw. Spannungswert des Diagramms (d. h. der oberen horizontalen Linie).

Tabelle 3.30: Symbole und Abkürzungen des Messgerät-Bildschirms

Tabelle 3.31: Tastenfunktion

	Momentanwert der Wellenform:
	• Festhalten (Hold) der Messung in der Anzeige
	• Save (Speicherung) der Messung im Speicher
<b>F</b> 2	Zwischen den Spannungen u ⁻ /u ⁰ umschalten und die Spannung zur Skalierung auswählen (mit Cursors)
FZ	Zwischen den Strömen i ⁻ /i ⁰ umschalten und den Strom zur Skalierung auswählen (mit Cursors)
	U-I Umschalten zum Phasendiagramm
FA	SYM Umschalten zum Symmetriediagramm
	<b>TREND</b> Umschalten zur Ansicht TREND (VERLAUF) (nur während des Aufzeichnungsmodus möglich)
	Amplitude des angezeigten Diagramms skalieren.
ESC	Zurück zum MEASUREMENTS-Menü.

## 3.7.3 Symmetrieverlauf

Währen der aktiven Aufzeichnung ist die Ansicht SYMETRY **TREND** (SYMMETRIEVERLAUF) verfügbar (wie man den Recorder (Aufzeichnungsmodus) startet, wird in 3.9 erklärt.

SYMMET	RY TR	END			12:06
Usym- 🗴	0.20	%	Usym- 🛽	0.33	%
Usym- X	0.26	%			
<b>X</b> 0.37 <b>X</b> 0	.08			t: 00D 00	D:24:34
			-		288 29
ZOOM+-	Usym	. Usym0		(	J-1

Abbildung 3.29: Bildschirm Symmetrieverlauf (Symmetry Trend)

Tabelle 3.32: Symbole und Abkürzungen des Messgerät-Bildschirms

	Strom-Recorderstatus:
	RECORDER ist aktiv
	RECORDER beschäftigt (holt Daten aus Speicher)
20:45	Aktuelle Zeit des Instruments
Usym-	Maximal- ( <b>I</b> ), Mittel- ( <b>I</b> ) und Minimal- ( <b>I</b> ) Wert des negativen Sequenzspannungs-Verhältnisses u- für das zuletzt aufgezeichnete Zeitintervall (IP)
Usym0	Maximal- (∡), Mittel- (봋) und Minimal- (ヱ) Wert des Nullsequenz- spannungs-Verhältnisses u ⁰ für das zuletzt aufgezeichnete Zeitintervall (IP)
lsym-	Maximal- ( <b>I</b> ), Mittel- ( <b>I</b> ) und Minimal- ( <b>I</b> ) Wert des negativen Sequenzstrom-Verhältnisses i- für das zuletzt aufgezeichnete Zeitintervall (IP)
lsym0	Maximal- (조), Mittel- (Ⅹ) und Minimal- (또) Wert des Nullsequenzstrom- Verhältnisses i ⁰ für das zuletzt aufgezeichnete Zeitintervall (IP)
t: 00D 00:13:23	Zeit Strom-RECORDER (Tage Stunden:Min.:Sek.)
▲0.578 ⊻0.495	Aufgezeichnete Maximal (조) und Minimal- (Σ) Größe

#### Tabelle 3.33: Tastenfunktionen

F1	Z00M-+	Vergrößern		
	Z00M+-	Verkleinern		
	Usym- ^{Usym0}	Ansicht Negativsequenz-Spannungsverhältnis		
<b>E</b> 2	Usym0 Isym-	Ansicht Nullsequenz-Spannungsverhältnis		
	lsym- ^{Isym0}	Ansicht Negativsequenz-Stromverhältnis		
	Isym0 Usym-	Ansicht Nullsequenz-Stromverhältnis		
	U-I	Umschalten zum Phasendiagramm		
F4	SYM	Umschalten zum Symmetriediagramm		
	TREND	Umschalten zur Ansicht TREND (VERLAUF) (nur während des Aufzeichnungsmodus möglich)		
ESC	Rückkehr zum Menübildschirm "MEASUREMENTS".			

# 3.8 Temperatur

Die Instrumente PowerQ4 / PowerQ4 Plus können die Temperatur messen und aufzeichnen. Die Temperatur wird in beiden Einheiten, sowohl in Celsius als auch in Fahrenheit ausgegeben. In den folgenden Bereichen finden Sie Anweisungen zum Start der Aufzeichnung. Wie man eine Nullleiterklemmeneingang mit Temperaturfühler einrichtet, erfahren Sie im Bereich 4.2.4.

## 3.8.1 Meter-Anzeige



Abbildung 3.30: Bildschirm Temperaturermessung

Tabelle 3.34: Symbole und Abkürzungen des Messgerät-Bildschirms

	Strom-Recorderstatus
	Instrument zeichnet auf
	<ul> <li>Instrument ist beschäftigt. (Datenspeicherung)</li> </ul>
	<ul> <li>Instrument nicht in Aufzeichnungsmodus</li> </ul>
20:45	Aktuelle Zeit des Instruments

Tabelle 3.35: Tastenfunktion



# 3.8.2 Ansicht Trend (Verlauf)

Der Temperaturmessungsverlauf kann nur angezeigt werden, wenn die Aufzeichnung läuft. Die Aufzeichnungen mit Temperaturangaben können mithilfe der PC-Software PowerView v2.0 eingesehen werden.

TEMP	ED	а <del>т</del> а нът		NITS.			44.20
TENT	ER.	ATUR	= IRE	:ND			14:39
Temp	T	+34.8	°C	Temp	I	+34.8	ő
Temp	¥	+34.8	°C				
¥ +36.1°	CΣ	+30.7°C				t: 00D 01	:06:03
	۴ چس	~⊷q ^{~∞^} ]	M	w^	<i>~</i> ~_		 
Z00	/+-	0°	°F			ME	TER

Abbildung 3.31: Bildschirm Temperaturverlauf (Trend)

Tabelle 3.36: Symbole und Abkürzungen des Messgerät-Bildschirms

	Strom-Recorderstatus
	Instrument zeichnet auf
	<ul> <li>Instrument beschäftigt (speichert Daten ab)</li> </ul>
20:45	Aktuelle Zeit des Instruments
Temp:	Maximal- (조), Mittel- (𝔄) und Minimal- (𝔄) Wert der Temperatur für das zuletzt gemessene Zeitintervall (IP)
t: 00D 00:13:23	Zeit Strom-RECORDER (Tage Stunden:Min.:Sek.)
<b>▲</b> +36.1°C <b>⊻</b> +30.7°C	Maximal- und Minimaltemperatur beim angezeigten Diagramm

#### Tabelle 3.37: Tastenfunktionen

F1	ZOOM-+VergrößernZOOM+-Verkleinern
F2	°C °F Temperaturskala ändern (Celsius / Fahrenheit)
<b>F</b> 4	METER Umschalten zur Ansicht METER (MESSWERTE)
ESC	Rückkehr zum Menübildschirm "MEASUREMENTS".

# 3.9 Allgemeiner Recorder

PowerQ4 / PowerQ4 Plus können die gemessenen Daten im Hintergrund aufzeichnen. Im Menü RECORDER kann der Benutzer die Parameter einstellen, die bei der Aufzeichnung hinsichtlich Typ, Dauer sowie Anzahl der Signale für die Aufzeichnung erfüllt werden sollen. Durch Aktivieren des Menüs "RECORDER" wird der folgende Bildschirm eingeblendet:

RECORDER		16:46
Record Typ	be:	Voltage quality
Interval:		10min
Signals	4	145
Memory typ	be:	Linear
Duration	4	07 d 00 h 00 m
Include act	ive events	On
Include act	ive alarms	Off
Start time	4	Manual
START	CONF	

Abbildung 3.32: Bildschirm für Basiseinstellung Recorder

In der folgenden Tabelle werden die Recordereinstellungen erklärt:

Tabelle 3.38: Beschreibung der Recordereinstellungen

Record type (Datensatztyp):	<ul> <li>Wählen Sie den Datensatztyp aus. Folgende Optionen sind verfügbar und können mithilfe des Konfigurationsmenüs eingestellt werden:</li> <li>Datensatz (benutzerdefiniert)</li> <li>Spannungsqualität (gemäß EN 50160)</li> </ul>
Intervall	<ul> <li>Recorder-Aggregationsintervall auswählen. Für jedes Zeitintervall werden (je Signal) die Minimal-, Mittel- und Maximalwerte aufgezeichnet. Je kleiner das Intervall ist, desto mehr Messungen werden für dieselbe Datensatzlänge vorgenommen.</li> <li>Hinweis: Falls nicht genügend Speicherplatz für das gewünschte Intervall bzw. die gewünschte Aufzeichnungsdauer zur Verfügung steht, ändert das Instrument die Dauer automatisch.</li> <li>Hinweis: Datensätze nach EN 50160 speichern nur Mittelwerte pro Intervall.</li> </ul>
Signals (Signale)	<ul> <li>Die aufzuzeichnenden Signale auszuwählen. Siehe 4.2.5 (detaillierte Kanalliste).</li> <li>CHANNELS SETUP</li> <li>U, I, f</li> <li>On</li> <li>Power &amp; Energy</li> <li>On</li> <li>Flickers</li> <li>Off</li> <li>Sym</li> <li>Off</li> <li>Harmonics</li> <li>On</li> <li>Interharmonics</li> <li>On</li> <li>Interharmonics</li> <li>Interharmonics</li> <li>On</li> <li>Flickers</li> <li>Energy – Leistungs- &amp; Energieparameter für die Aufzeichnung auswählen.</li> <li>Flickers – Flickerparameter für die Aufzeichnung auswählen.</li> </ul>

	• Sym – Asymmetrieparameter für die Aufzeichnung					
	auswählen.					
	Harmonics – auswählen, welche Spannungs- und					
	Stromoberwellen mit aufgezeichnet werden sollen.					
	HARMONICS SETUP					
	Voltage 1 → 50 All					
	Current 1 → 50 All					
	Der Benutzer hat folgende Auswahlmöglichkeiten:					
	<ul> <li>Erste und letzte aufzuzeichnende</li> </ul>					
	Spannungs- bzw. Stromoberwelle;					
	• Gerade, ungerade oder alle Oberwellen-					
	Komponenten für die Aufzeichnung auswahlen.					
	Interharmonische – Auswählen, welche Spannungs- und Stremeherunglag (laterharmonische Spannungs-					
	und Stromoberwellen (Interharmonische) mit					
	Hinweis: Wenn nur Harmonische oder Interharmonische					
	ausgewählt werden, kann der Benutzer bis zur 50. Ober-					
	wellenkomponente (Harmonische / Interharmonische)					
	aufzeichnen. Im Falle einer kombinierten Aufzeichnung					
	der Benutzer bis zur 25. Oberwellenkomponente					
	(Harmonische/Interharmonische) aufzeichnen.					
	Speicnerart auswanien:					
	<ul> <li>Linear – normaler Recorder, startet und stoppt je nach Benutzereinstellungen</li> </ul>					
	<ul> <li>nach Benutzereinstellungen.</li> <li>Zirkular – wenn die Aufzeichnungen, den freien</li> </ul>					
Speicherart	Speicher übersteigen, werden die ältesten Daten					
	der aktuellen Aufzeichnung mit den neuesten					
	überschrieben. Die Menge an aufgezeichneten					
	Aggregationsintervallen wird durch den freien					
	Flashspeicher vor Beginn der Aufzeichnung begrenzt.					
	Die Aufzeichnungsdauer auswählen.					
	SET DURATION					
Duration (Dauer)	07 Day 00 Hour 00 Min					
Duration (Dudor)	Hinweis: Wenn die Zeitdauer größer als die für den					
	vorhandenen Speicherplatz mögliche Zeitdauer, so wird					
	die Zeit automatisch entsprechend gekürzt.					
Include active events	Auswählen, ob aktive Ereignisse aufgezeichnet werden.					
(Aktive Ereignisse						
aufzeichnen)						
Include active alarms	Auswahlen, ob aktive Alarme aufgezeichnet werden.					
(ARUVE Aldrine aufzeichnen)						
	Den Startzeitnunkt für die Aufzeichnung festlegen:					
	Manual (manuall): die Eurktionstaste E1 betätigen					
	<ul> <li>Manual (manuell): die Funktionstaste Finberatigen</li> <li>Eine vordefinierte Startzeit festlegen zu der der</li> </ul>					
Start time (Startzeit)	Elle voldenmente Stanzen restiegen, zu der der					
	SET START TIME					
	01:03:00					
	01.01.00					

F1	START	Starten des Recorders
	STOP	Stoppen des Recorders
		Offnen des Untermenüs Configuration CONFIGURATION MENU EN50160 Configuration 1 Configuration 2 Default configuration Folgende Optionen sind verfügbar:
		<ul> <li>"EN50160" – vordefinierte Konfiguration f ür die Pr üfung nach EN 50160.</li> </ul>
		<ul> <li>Configuration 1 - Benutzerdefinierte Konfiguration.</li> </ul>
F2	CONE	Configuration 2 - Benutzerdefinierte Konfiguration.
	ooni	"Default configuration" – Werkseinstellungen.
		Hinweis: Die Prüfung nach EN 50160 zeichnet lediglich
		Hinweis: Die Prüfung nach EN 50160 zeichnet
		standardmäßig nur Spannungsparameter auf. Strom.
		Leistung und andere Werte werden weder aufgezeichnet
		noch standardmäßig im Verlaufsdiagramm gezeigt. Mithilfe
		des Menüs SIGNALS kann der Benutzer Leistungs- bzw.
		und eine Messung nach EN 50160 durchführen
F3	LOAD	Laden der ausgewählten Konfiguration (im Untermenü aktiv).
F4	SAVE	Speichern der Änderungen an der ausgewählten Konfiguration (im Untermenü aktiv).
ENTER	Das ausgev	wählte Untermenü aktivieren
	Parameter	/ geänderten Wert auswählen.
	Parameter	/ geänderten Wert auswählen.
ESC	Zurück zum	ı vorherigen Menü.

#### Tabelle 3.39: Tastenfunktionen

# 3.10 Wellenform-Recorder⁶

Der Wellenform-Recorder ist ein sehr leistungsstarkes Tool zur Fehlerbehebung und zum Messen von Strom und Spannung in Wellenform. Die Wellenformmethode speichert über eine definierte Anzahl Perioden ausgewählter Spannungs- und Stromsignale ab einem Auslösezeitpunkt. Jede Aufzeichnung besteht aus einem Auslösepuffer Vorpuffer (vor Auslösepunkt) und einem Speicherpuffer (nach Auslösung).

⁶ nur PowerQ4 Plus

# 3.10.1 Setup (Einrichtung)

Durch Aktivierung des Menüs "WAVEFORM RECORDER" aus dem Menübildschirm "RECORDERS" wird der Setupbildschirm "WAVEFORM RECORDER" angezeigt.

WAVEFORM RECOR	DER 💽 16:47
Signals: <b></b> ₽	6
Trigger source:	Manual
Store buffer:	100 periods
Pretrigger buffer:	20 periods
Store mode:	Single
CTADT	
STARI	

Abbildung 3.33: Bildschirm für Wellenform-Recorder

T-6-11- 0 10. 0		A la latterne una ava a	with Dilate eletione e
IANAIIA KALI'N	vmnnie lina		rat_Riineenirme
		ADRUIZUNGON	

	Die aufzuzeichnenden Signale auswählen:		
Signals (Signale)	SIGNALS U1 U2 U3 Un I1 I2 I3 In		
Auslösersignal	<ul> <li>Setup Auslösesignal:</li> <li>Manuell – ausgelöst durch F1 - TRIG-Taste;</li> <li>Ereignisse – ausgelöst durch Spannungsereignis;</li> <li>Alarme – ausgelöst durch Alarmaktivierung;</li> <li>Ereignisse und Alarme – Spannungs- oder Alarmereignis löst Aufzeichnung aus.</li> <li>Hinweis: Die Auslösereinstellungen können in den Spannungsereignissen und Alarmeinstellungen vor- genommen werden.</li> </ul>		
Speicherpuffer	Anzahl der aufzuzeichnenden Perioden.		
Vorauslöserpuffer	Länge des Vorauslöserpuffers (Anzahl der Perioden).		
Speichermodus	<ul> <li>Setup des Speichermodus:</li> <li>Einzelspeicherung – Wellenform-Aufzeichnung endet nach erstem Auslöser;</li> <li>Laufende Speicherung – fortlaufende Wellenform- Aufzeichnung bis Benutzer die Messung stoppt oder der Speicherplatz des Instruments belegt ist. Aufeinanderfolgende Wellenformaufzeichnungen werden als separater Datensatz behandelt.</li> </ul>		

#### Tabelle 3.41: Tastenfunktionen

	START	Wellenformrecorder starten.
F1	STOP	Wellenformrecorder stoppen. <i>Hinweis:</i> Wenn der Benutzer den Abbruch der Aufzeichnung des Wellenformrecorders erzwingt, werden keine Daten generichert. Die Detenpretekellierung findet erst nach
		Aktivieren des Triggers statt.

F2	Auslösebedingung manuell generieren (Nur aktiv, wenn manuelle Auslösung ausgewählt wurde und Aufzeichnung läuft).
<b>F4</b>	<ul> <li>SET Auswahl und Aufhebung der Auswahl von Signalen für die Aufzeichnung von Wellenformen im Dialogfenster SIGNALS.</li> <li>SCOPE Umschalten zur Ansicht SCOPE (MESSBEREICH)</li> </ul>
	Im Dialog "Signals" (Signale) können alle Kanäle durchblättert werden.
	<ul> <li>Wenn "Trigger source" ausgewählt ist, kann das Auslösersignal geändert werden.</li> <li>Im Dialog "Signals" (Signale) können alle Kanäle durchblättert werden.</li> <li>Wenn "Store buffer" ausgewählt ist, kann der Speicherpuffer ausgewählt werden.</li> <li>Wenn "Pre – trigger length" ausgewählt ist, kann die Vorauslöser-Puffergröße geändert werden.</li> </ul>
ENTER	Öffnet (wenn "Signals" ausgewählt ist) den Dialog SIGNALS (Signale). In diesem Dialog können die einzelnen Signale für die Aufzeichnung ausgewählt werden.
ESC	Zurück in den Hauptmenübildschirm "RECORDERS" oder Schließen des Dialogfensters "Signals" (falls der Dialog noch offen ist).

# 3.10.2 Aufzeichnen der Wellenform

Der folgende Bildschirm wird eingeblendet, wenn Benutzer die Wellenform-Protokollierung startet.



Abbildung 3.34: Messgeräte-Bildschirm für Wellenform-Recorder

Tabelle 3.42: Symbole und Abkürzungen des Messgerät-Bildschirms

	<ul><li>Aktueller Instrumentenstatus:</li><li>Das Instrument wartet auf ein Auslösesignal.</li></ul>	
٥	<ul> <li>Das Instrument zeichnet auf (Piepton zeigt an, dass ein Auslöser- Grenzwert erreicht wurde).</li> </ul>	
$\mathbf{X}$	<ul> <li>Instrument beschäftigt (speichert Daten ab)</li> </ul>	
20:45	Aktuelle Zeit des Instruments	
Up	Echt-Effektivwert der Phasenspannung:	
p: [13, N]	$U_{1Rms}, U_{2Rms}, U_{3Rms}, U_{NRms}$	
Upg	Echt-Effektivwert der (Leiter-) Spannung Phase zu Phase:	
p,g: [1, 2, 3]	$U_{12Rms}, U_{23Rms}, U_{31Rms}$	

lp	Echt-Effektivwert des Stroms:	
p: [13, N]	I _{1Rms} , I _{2Rms} , I _{3Rms} , I _{NRms}	
Thd	Gesamtklirrfaktor für die angezeigte Größe (THD _U bzw. THD _I )	
f	Frequenz auf Referenzkanal	

### Tabelle 3.43: Tastenfunktionen

F1	Auslösebedingung manuell generieren (Nur aktiv, wenn manuelle
	Auslösung ausgewählt wurde und Aufzeichnung läuft).
	Auswählen der anzuzeigenden Wellenform:
_	U Spannungswellenform anzeigen
F2	Stromwellenform anzeigen
	U+I W Spannungs- und Stromwellenform (Einzelmodus) anzeigen
	U/I ♥ Spannungs- und Stromwellenform (Dualmodus) anzeigen
	Auswählen zwischen den Ansichten Phase, Neutral,
	Alle-Phasen und Leitung:
	<ul> <li>Anzeige der Wellenformen für Phase L1</li> </ul>
	<ul> <li>Anzeige der Wellenformen f ür Phase L2</li> </ul>
<b>E</b> 2	• Anzeige der Wellenformen für Phase L3
	<ul> <li>123 N[⊥]</li> <li>Anzeige der Wellenform f ür Nullkanal</li> </ul>
	• Zusammenfassung aller Phasen-Wellenformen
	• Anzeige der Spannungsmessungen von Phase zu Phase
	METER Umschalten zur Ansicht METER (MESSWERTE).
F4	SCOPE Umschalten zur Ansicht SCOPE (MESSBEREICH)
	Auswählen, welche Wellenform vergrößert / verkleinert werden soll
ENTER	(nur bei U/l oder U+I).
	Vertikalen Zoomfaktor einstellen.
	Horizontalen Zoomfaktor einstellen.
ESC	Rückkehr zum Setup-Menübildschirm "WAVEFORM RECORDER".

## 3.10.3 Wellenform-Erfassungen

Wellenform-Erfassungen können aus dem Menü Speicherliste aufgerufen werden. Folgende Ansichten für Wellenformen sind verfügbar:

- Tabellarische Anzeige der Messwerte U, I, f.
- Anzeige des Messbereichs U, I, f.
- Verlaufs-Bildschirm U,I,f RMS.

U,I,f - MET	TER	R:23	_1	12:33
	U		I	
RMS	<b>194.6</b> V		1768	А
THD	0.7 %	, D	0.0	%
CF	1.67		1.41	
PEAK	325.0 V		2500	Α
MAX 1/2	230.3 V		1771	Α
MIN 1/2	<b>0.0</b> V		0.0	Α
f	49.984 H	z		
	1	23N人A	SCC	PE

Abbildung 3.35: Messwertanzeige der Wellenform-Erfassungen

Tabelle 3.44: Symbole und Abkürzungen des Messgerät-Bildschirms – MESSWERTE

L1 L2 L3 L12 L23 L31 N A A	Aktuellen Wert des jeweiligen Kanals anzeigen.		
R:23	Zeigt die Datensatznummer in der MEMORY LIST (SPEICHERLISTE)		
20:45	Aktuelle Zeit des Instruments		
RMS	Echt-Effektivwert U _{Rms(10)} und I _{Rms(10)} .		
THD	Gesamtklirrfaktor (Total Harmonic Distortion, Oberwellengehalt) $THD_U$ und $THD_I$		
CF	Crest-Faktor (Scheitelfaktor) Cfu und Cf		
PEAK	Scheitelwert U _{Pk} und I _{Pk}		
MAX 1/2	Maximalspannung $U_{Rms(1/2)}$ $U_{Rms(1/2)Max}$ und Maximalstrom $I_{\frac{1}{2}Rms}$ , $I_{\frac{1}{2}RmsMax}$ gemessen ab letztem Rücksetzen (Taste: F2).		
MIN 1/2	Minimalspannung U _{Rms(1/2)} U _{Rms(1/2)Min} und Minimalstrom I _{1/2Rms} , I _{1/2RmsMin} gemessen ab letztem Rücksetzen (Taste: F2).		
f	Frequenz auf Referenzkanal		

### Tabelle 3.45: Tastenfunktionen – MESSWERTE

F3	123N人∆	Anzeige der Messungen für Phase L1
	1 <b>2</b> 3N人∆	Anzeige der Messungen für Phase L2
	12 <b>3</b> N↓∆	Anzeige der Messungen für Phase L3
	123 <b>N</b> ⊥∆	Anzeige der Messung für Nullkanal
	123N人A	Zusammenfassung aller Phasenmessungen
	123N人 <u>A</u>	Anzeige der Spannungsmessungen von Phase zu Phase
F4	METER	Umschalten zur Ansicht METER (MESSWERTE).
	SCOPE	Umschalten zur Ansicht SCOPE (MESSBEREICH)
	TREND	Umschalten zur Ansicht TREND (VERLAUF) (nur während des Aufzeichnungsmodus möglich)
ESC		Rückkehr zum Setup-Menübildschirm "WAVEFORM RECORDER".



Abbildung 3.36: Messbereichsanzeige der Wellenform-Erfassungen

Tabelle 3.46: Symbole und Abkürzungen des Messgerät-Bildschirms – MESSBEREICH

20:45	Aktuelle Zeit des Instruments
R:15	Zeigt die Datensatznummer in der MEMORY LIST (SPEICHERLISTE)
U1, U2, U3, Un, U12, U23, U31	Echt-Effektivspannungswert – U _{Rms(10)}
I1, I2, I3, In	Echt-Effektivstromwert – I _{Rms(10)}
Thd	Gesamtklirrfaktor (Total Harmonic Distortion, Oberwellengehalt) THD $_{\rm U}$ und THD $_{\rm I}$
f	Frequenz auf Referenzkanal
0ms 125.0ms	Zeitskala zu Beginn und am Ende des Messbereichs-Bildschirms
601.6V	Spannungs- / Stromskala und oberer / unterer Teil des Messbereich-
2040A	Bildschirms
17:36:58.408	Zeit an der Cursorposition

F1	Z00M+- Z00M-+	Vergrößern. Verkleinern.			
		Auswählen zwischen den folgenden Signalen:			
	U '	Spannungswellenform anzeigen			
E2	I ∪+	Stromwellenform anzeigen			
	U+I 04	Spannungs- und Stromwellenform als Einzeldiagramm anzeigen;			
	<b>U/I</b> V	Spannungs- und Stromwellenform in zwei separaten Diagrammen anzeigen.			
	123N人∆	Anzeige der Messungen für Phase L1			
	1 <b>2</b> 3N人∆	Anzeige der Messungen für Phase L2			
	12 <b>3</b> N↓∆	Anzeige der Messungen für Phase L3			
	123 <b>N</b> 人A	Anzeige der Messung für Nullleiterkanal			
	^{123N} 人∆	Zusammenfassung aller Phasenmessungen			
	123N人 <u>人</u>	Anzeige der Spannungsmessungen von Phase zu Phase			
F4	TREND	Umschalten auf Anzeige RMS TREND.			





Abbildung 3.37: RMS-Verlaufsanzeige der Wellenform-Erfassungen

Tabelle 3.48: Symbole und Abkürzungen des Messgerät-Bildschirms – VERLAUF

	Aktueller Recorderstatus;		
	Instrument zeichnet auf;		
	<ul> <li>RECORDER beschäftigt (holt Daten aus Speicher);</li> </ul>		
	<ul> <li>Instrument nicht in Aufzeichnungsmodus.</li> </ul>		
20:45	Aktuelle Zeit des Instruments		
U1, U2, U3,			
Un, U12,	Echt-Effektivspannungswert – U _{Rms(10)}		
U23, U31			
I1, I2, I3, In	Echt-Effektivstromwert – I _{Rms(10)}		
Thd	Gesamtklirrfaktor (Total Harmonic Distortion, Oberwellengehalt) THDU		
	und THD ₁		
f	Frequenz auf Referenzkanal		
17:36:58.408	Zeit an der Cursorposition		

Tabelle 3.49: Tastenfunktionen – VERLAUF

F1	Z00M+-	Vergrößern.
	ZOOM-+	Verkleinern.
		Auswählen zwischen den folgenden Signalen:
<b>F</b> 2	U I	Spannungswellenform anzeigen
	ΙU	Stromwellenform anzeigen.



Auswählen zwischen Phase, Neutral, Alle-Phasen und Ansicht:

	123NA Anzeige des Trends (Verlaufs) für Phase L1		
	123NA Anzeige des Trends (Verlaufs) für Phase L2		
	123NA Anzeige des Trends (Verlaufs) für Phase L3		
	123 NA Anzeige des Trends (Verlaufs) für Neutral		
	123N人         Zusammenfassung aller Phasentrends		
F4	METER Umschalten zur Ansicht METER (MESSWERTE).		
ENTER	Cursor wechseln zwischen Wellenform-Messbereich und RMS-Verlauf.		
	Vertikalen Zoom einstellen (nur wenn Cursor im Wellenform-Messbereich).		
	Cursorposition bewegen.		
ESC	Rückkehr zum Setup-Menübildschirm "WAVEFORM RECORDER".		

# 3.11 Recorder für Einschaltspitze

Ströme mit hohen Einschaltspitzen für Motoren können verursachen, dass Trennschalter oder Sicherungen auslösen. Der höchste erwartete Strom während einer Einschaltspitze kann zwischen 6 und 14 mal höher liegen, als der Gesamtlaststrom des Motors.

Diese Funktion basiert auf dem Prinzip, dass (Auslöser-)Daten mit positiven, negativen oder beiden Flanken eines Strom- oder Spannungseingangs protokolliert werden, wenn eingestellte Daten überstiegen werden.

Wenn der Auslöser auftritt, beginnt die Datenaufzeichnung. Das Instrument zeichnet solange auf, bis die Dauer erreicht wurde. Ebenso werden je nach Vorauslöserlänge die Parameter aufgezeichnet, die das Instrument vor dem Auslösesignal gemessen hat.

## 3.11.1 Setup (Einrichtung)

Durch Auswahl von "INRUSH / FAST RECORDER" im Menübildschirm "RECORDERS" wird der Bildschirm für Einschaltspitzen angezeigt (siehe Abbildung unten).

INRUSH RECORDER	2	11:43
Interval:	10 ms	
Signals 🕶	8	
Trigger 🕶	25.6 %	
11, 12, 13:	256.0 A	
ln:	256.0 A	
Duration:	15 s	
Pretrigger length:	10 3	
Store mode:	Single	
START		

Abbildung 3.38: Bildschirm für Einschaltspitzen-Recorder

Intervall	Protokollierungsintervall einstel	ien (von 10 ms bis 200 ms).	
	Die aufzuzeichnenden Sig	nale auswählen:	
Signals (Signale)			
Trigger	Trigger einrichten:		
	<ul> <li>Aktueller Eingang f ür 1</li> </ul>	Friggerquelle	
	<ul> <li>Auslösewert, ab dem og</li> </ul>	die Inrush (Einschaltspitzen-)	
	Protokollierung beginn	t	
	<ul> <li>Auslöserflanken-Richtug</li> </ul>	ung (ABFALL, ANSTIEG,	
	BEIDE).		
	TRICOER		
	<u> 1</u>   2  3  In	U1 U2 U3 Un	
	Level: 25.6 %	Level: 27.8 %	
	11, 12, 13:256.0 A	U1, U2, U3: 83.4 V	
	Slope: FALL	Slope: FALL	
Duration (Dauer)	Gesamtprotokollzeit in Sekun	den	
Vorabauslöser-l änge	Einstellen der Länge der Protokolliorung vor Ausläsor		
Volubuuslosel Lunge	signal		
Speichermodus	Setun des Speichermodus:		
Operchermodus	• Finzelmessung – Fi	nzelne Protokollierung einer	
	Finschaltsnitze	izeline i rotokolilerung einer	
	Laufende Speicheru	na – aufeinanderfolgende	
	Finechaltenitzen-Proto	kollierung his Benutzer die	
	Messung stoppt od	ar dar Speicharplatz das	
	Instruments beloct ist	lodo aufoinandorfolgondo	
	Protokolliorung oiner	Einschaltspitzo wird als	
	soparator Datapasta h	chandalt	
	separater Datensatz b	ehandelt.	

## Tabelle 3.50: Symbole und Abkürzungen des Messgerät-Bildschirms

# Tabelle 3.51: Tastenfunktionen

	START	Starten des Ir	nrush Logger	(Einsch	naltspitzen-Prot	tokollieru	ng).
	U	Umschalten z	zwischen Sp	annung	js- und Strom	signalaus	swahl
		als Auslöser (	Nur im Dialog	gfenstei	r "Auslöser (Tri	gger)").	
E1	ΙU	Hinweis: We	nn der Benu	tzer dei	n Abbruch der	Aufzeich	nung
		der Einschalt	spitzen-Proto	okollieru	ing erzwingt,	werden	keine
		Daten gespeie	chert.				
		Die Datenpro	otokollierung	findet	erst nach A	ktivieren	des
		Triggers statt.					
	SET	Umschalten	zwischen	ON	(ausgewählt)	und	OFF
		(nicht ausgewä	ählt) zur Aufze	eichnung	g im Dialogfenst	er SIGNA	L.
		Umschalten	zwischen	ON	(ausgewählt)	und	OFF
		(nicht ausgewä	ählt) zur Aufze	eichnung	g im Dialogfenst	er SIGNA	L.
	Auswählen	von "Intervall", '	"Signale", "Au	ıslöser",	"Dauer", "Läng	e vor Aus	löser"
	oder "Speic	hermodus" im S	Setup-Bildschi	irm "INR	USH LOGGER		
	Im Dialog	"Signals" (Si	ignale) kanr	n zwisc	hen den Spa	annungs-	und
	Stromwerte	en geblättert we	erden.				

	Im Dialog "Trigger" (Auslöser) kann zwischen Trigger Source (Auslösesignal), Trigger Level (Auslöseschwelle) und Trigger Slope
	(Auslösesteigung) geblättert werden.
	Wenn "Interval" (Intervall) ausgewählt wird, kann die Intervalldauer geändert werden.
	Im Dialog "Signals" (Signale) können alle Kanäle durchgeblättert werden. Im Dialog "Trigger" (Auslöser) kann zwischen Trigger Sources (Auslösesignal) / Change Trigger Level (Auslösewert ändern) / Change Trigger Slope (Auslösesteigung ändern) geblättert werden.
ENTER	Öffnet (wenn "Signals" ausgewählt ist) den Dialog SIGNALS (Signale). In diesem Dialog können die einzelnen Signale für die Protokollierung ausgewählt werden. Öffnet (wenn "Trigger" ausgewählt ist) den Dialog TRIGGER (Auslöser).
	In dem Dialog können die Trigger-Kanäle gewählt und die Auslösewerte für Trigger Level (Auslösewert) und Trigger Slope (Auslösesteigung) für die Protokollierung definiert werden.
ESC	Zurück in den Hauptmenübildschirm "RECORDERS" oder Schließen des Dialogs "Signals" bzw. "Trigger" (falls der Dialog noch offen ist).

## 3.11.2 Erfassen der Einschaltspitze

Der folgende Bildschirm wird eingeblendet, wenn Benutzer die Einschaltspitzen-Protokollierung startet.

l1: Thd:	1768 A 0.0 %	f: Trig:	49.984 Hz 256.0 A	
2040	۹			

Abbildung 3.39: Bildschirm für Einschaltspitzen-Erfassung

Tabelle 3.52: Symbole und	Abkürzungen des	Messgerät-Bildschirms
---------------------------	-----------------	-----------------------

	Strom-Recorderstatus:
$\Box$	<ul> <li>Instrument wartet (Auslösebedingungen sind nicht erfüllt);</li> </ul>
۲	<ul> <li>Das Instrument zeichnet auf (Piepton zeigt an, dass ein Auslöser- Grenzwert erreicht wurde).</li> </ul>
20:45	Aktuelle Zeit des Instruments
U1UN	Echt-Effektivspannungswert U _{Rms(10)}
I1IN	Echt-Effektivstromwert I _{Rms(10)}
Thd	Gesamtklirrfaktor (Total Harmonic Distortion) THD _U oder THD _I
f	Frequenz auf Referenzkanal
Trig	Festgelegter Auslösewert
230.4 ∨ 2040 A	Entspricht dem aktuellen (Spannungs-)Wert oben im Graphen (horizontale Linie zwischen Graphen- und Tabellenwert)

Tabelle 3.53: Tastenfunktion

	STOP	Stoppen des Inrush Logger (der Einschaltspitzen- Protokollierung).
F1		<i>Hinweis:</i> Wenn der Benutzer den Abbruch der Aufzeichnung der Einschaltspitzen-Protokollierung erzwingt, werden keine Daten gespeichert. Die Datenprotokollierung findet erst nach Aktivieren des
		Triggers statt.
		Umschalten zwischen Spannungs- und Stromkanal.
F2	U	Grafische Darstellung des Spannungsverlaufs U _{Rms(1/2)} anzeigen
	I V	Grafische Darstellung des Stromverlaufs I _{½Rms} anzeigen
		Auswählen zwischen Phasen.
_	<b>1</b> 23N	Diagramm und Parameter für Phase L1 anzeigen.
F3	1 <b>2</b> 3N	Diagramm und Parameter für Phase L2 anzeigen.
	12 <b>3</b> N	Diagramm und Parameter für Phase L3 anzeigen.
	123 <b>N</b>	Diagramm und Parameter für Nullleiter anzeigen.
ESC		Rückkehr zum Menübildschirm "RECORDERS".

## 3.11.3 Erfasste Einschaltspitze

Einschaltspitzen-Erfassungen können aus dem Menü Speicherliste aufgerufen werden. Mithilfe des Cursors kann der Signalverlauf betrachtet werden und innerhalb des Signalverlaufs geblättert werden. Die Daten werden in grafischer (Logger Histogram) und numerischer Form (Intervalldaten) dargestellt.

In den Datenfeldern können folgende Werte angezeigt werden:

- Minimum-, Maximum- und Mittelwertdaten des mit dem Cursor ausgewählten Intervalls,
- Zeit relativ zur Auslösezeit.

Der vollständige Verlauf des ausgewählten Signals kann im Histogramm betrachtet werden. Der Cursor wird auf das ausgewählte Intervall bewegt und kann über alle Intervalle hinweg bewegt werden. Alle Ergebnisse werden im Speicher des Instruments abgelegt. Die Signale werden automatisch skaliert.

INRUSH	RECO	RDEF	R:1	6	12:12
l1 X	1771	Α			
			Trig:	256.0	А
▲ 1780 A ¥	0.0 A			t: - 00:0	9:910
				ſ	
			Ĭ,	لے	
			: 27	.10.09 11	:36:54
ZOOM-+		UH	123N/	<b>`</b>	f

Abbildung 3.40: Erfasste Einschaltspitzen

	Instrument lädt Daten aus dem Speicher.
R:16	Zeigt die Datensatznummer in der MEMORY LIST (SPEICHERLISTE)
20:45	Aktuelle Zeit des Instruments
۲	Zeigt die Cursorposition im Diagramm.
U1UN	Echt-Effektivspannungswert U _{Rms10} an der Cursorposition.
I1IN	Echt-Effektivstromwert I _{Rms10} an der Cursorposition.
Trig	Festgelegter Auslösewert
<b>▲</b> 230.6 V <b>★</b> 225.3 V	Maximal- und Minimalwert (Strom / Spannung) im Diagramm.
<b>X</b> 892.1A <b>X</b> 3.4A	
01.01.00 00:46:31	Datum und Zeit der aktuellen Cursorposition.
t: - 00:00:630	Zeit relativ zum Auftreten des Auslösers.

Tabelle 3.54: Symbole und Abkürzungen des Messgerät-Bildschirms

### Tabelle 3.55: Tastenfunktion

F1	Z00M+- Z00M-+	Vergrößern. Verkleinern.
F2	U I I UH UH VA UH V	Umschalten zwischen Spannungs- und Stromkanal: Grafische Darstellung des Spannungsverlaufs U _{Rms(1/2)} anzeigen; Grafische Darstellung des Stromverlaufs I _{½Rms} anzeigen; Grafische Darstellung des Spannungsverlaufs U _{rms(1/2)} und Stromverlaufs I _{½Rms} in einem einzelnen Diagramm anzeigen; Grafische Darstellung des Spannungsverlaufs U _{rms(1/2)} und Stromverlaufs I _{½Rms} zwei getrennten Diagrammen anzeigen
		Auswählen zwischen Phase, Neutral, Alle-Phasen und Ansicht:
	123N人	Anzeige des Trends (Verlaufs) für Phase L1
	1 <b>2</b> 3N人	Anzeige des Trends (Verlaufs) für Phase L2
	12 <b>3</b> N人	Anzeige des Trends (Verlaufs) für Phase L3
	123 <b>N</b> 人	Anzeige des Trends (Verlaufs) für Neutral
	^{123N} 人	Zusammenfassung aller Phasentrends
FA	f	Frequenzverlauf anzeigen.
	TREND	Spannungs- / Stromverlauf anzeigen
ENTER	Auswählen	zwischen Messbereichen.
	Mit dem Cu	rsor durch die protokollierten Daten blättern.
ESC	Rückkehr z	um Setup-Menübildschirm "INRUSH LOGGER".

# 3.12 Recorder für Transiente⁷

Eine Transiente ist eine **kurze, stark gedämpfte** Momentanspannung oder Stromstörung. Die Aufzeichnungen einer Transiente verläuft mit einer Abtastrate von 25kHz.

⁷ nur PowerQ4 Plus

Das Messprinzip ähnelt der der Wellenform-Aufzeichnung, jedoch mit einer 10 mal höheren Abtastrate (1024 Abtastungen pro Periode). Im Gegensatz zu Aufzeichnungen von Einschaltspitzen oder Wellenformen, in denen die Aufzeichnung durch RMS-Werte ausgelöst wird, erfolgt die Auslösung hier durch einen bestimmten Abtastwert.

## 3.12.1 Setup (Einrichtung)

TRANSIENTS SETU	IP	16:47
Trigger (d∨):	50.0 V	
Trigger type:	dV	
Store buffer:	10 periods	
Pretrigger buffer:	3 periods	
Store mode:	Single	
OTADT		
STARI		

Abbildung 3.41: Setu	o-Bildschirm	Transienten
----------------------	--------------	-------------

Taballa 2 56, 5	'umbolo und	Abkürzungon	doo Moood	oröt Dildoohirmo
<i>Tabelle</i> 3.00. 3	vilibule ullu	ADKUIZUIIUEII	<i>ues inessu</i>	
	<b>,</b>			

	Auslösewert:
Auslöser (dV)	dV dV
	Setup Auslösertyp: Manueller Auslöser – Der Benutzer kann das
Auslösertyp	Auslöserereignis manuell herbeiführen.
	• <b>dV</b> – Spannungsraten-Änderung als Auslöser des
Ou sisk smartfan	Inansienten-Recorders.
Speicnerpuffer	Anzani der aufzuzeichnenden Signale.
Vorauslöserpuffer	Anzahl der Signalperioden, die der Benutzer aufzeichnen will, bevor das Auslöse-Ereignis auftritt.
	Setup des Speichermodus:
	<ul> <li>Einzelmessung – Einzelne Transienten-</li> </ul>
	Aufzeichnung
	<ul> <li>Laufende Messung – aufeinanderfolgende</li> </ul>
Speichermodus	Transienten-Aufzeichnung bis Benutzer die
	Messung stoppt oder der Speicherplatz des
	Instruments belegt ist. Aufeinanderfolgende
	Transienten-Aufzeichnungen werden als separate

#### Tabelle 3.57: Tastenfunktionen

START	Transienten-Recorder starten.		
STOP	Transienten-Recorder stoppen.		
Hinweis: Wenn der Benutzer den Abbruch der Aufzeichnung			
	des Transienten-Recorders erzwingt, werden keine Daten		

	_	gespeichert.	Die	Datenprotokollierung	findet	erst	nach
		Aktivieren des	s Trigo	gers statt.			
F2	TRIG	Auslösebeding manuelle Aus	gung r Iösung	manuell generieren (Nur g ausgewählt wurde und	aktiv, w Aufzeic	enn nnung	läuft).
<b>F4</b>	SCOPE	Zur Ansicht MESSBEREICH wechseln (nur aktiv, wenn Aufzeichnung läuft).					
		Cursorpositio	n bew	regen.			
	Parameter / geänderten Wert auswählen.						
ESC		Zurück zum N Bildschirm "N	/lenüb IEMO	ildschirm "RECORDEF RY LIST".	S" oder	zum	

### 3.12.2 Erfassen von Transienten



Abbildung 3.42: Bildschirm Transientenerfassung

Tabelle 3.58: Symbole und Abkürzungen des Messgerät-Bildschirms

	Aktueller Instrumentenstatus:
	<ul> <li>Das Instrument wartet auf ein Auslösesignal.</li> </ul>
٥	<ul> <li>Das Instrument zeichnet auf (Piepton zeigt an, dass ein Auslöser- Grenzwert erreicht wurde).</li> </ul>
$\mathbf{X}$	<ul> <li>Instrument beschäftigt (speichert Daten ab)</li> </ul>
20:45	Aktuelle Zeit des Instruments
Up	Echt-Effektivwert der Phasenspannung:
p: [13, N]	U _{1Rms} , U _{2Rms} , U _{3Rms} , U _{NRms}
Upg	Echt-Effektivwert der (Leiter-) Spannung Phase zu Phase:
p,g: [1, 2, 3]	U _{12Rms} , U _{23Rms} , U _{31Rms}
lp	Echt-Effektivwert des Stroms:
p: [13, N]	I _{1Rms} , I _{2Rms} , I _{3Rms} , I _{NRms}
0ms 125.0ms	Zeitskala zu Beginn und am Ende des Messbereichs-Bildschirms
150.4V	Spannungsskala und oberer / unterer Teil des Messbereich-Bildschirms

#### Tabelle 3.59: Tastenfunktion

F1	<b>TRIG</b> Auslösebedingung manuell generieren (Nur aktiv, wenn manuelle Auslösung ausgewählt wurde und Aufzeichnung läuft).
F2	Auswählen der anzuzeigenden Wellenform: U I Spannungswellenform anzeigen I UH Stromwellenform anzeigen UH Spannungs- und Stromwellenform (Einzelmodus) anzeigen VI V Spannungs- und Stromwellenform (Dualmodus) anzeigen
<b>F3</b>	<ul> <li>Auswählen zwischen den Ansichten Phase, Neutral, Alle-Phasen und Leitung:</li> <li>123N↓</li> <li>Anzeige der Wellenformen für Phase L1</li> <li>Anzeige der Wellenformen für Phase L2</li> <li>123N↓</li> <li>Anzeige der Wellenformen für Phase L3</li> <li>Anzeige der Wellenform für Nullkanal</li> <li>Zusammenfassung aller Phasen-Wellenformen</li> <li>Anzeige der Spannungsmessungen von Phase zu Phase</li> </ul>
ENTER	Auswählen, welche Wellenform vergrößert / verkleinert werden soll (nur bei U/I oder U+I).
	Vertikalen Zoomfaktor einstellen.
	Horizontalen Zoomfaktor einstellen.
ESC	Rückkehr zum Menübildschirm "TRANSIENTS SETUP".

# 3.12.3 Erfasste Transienten

Datensätze mit erfassten Transienten können von der Speicherliste aus auf zwei verschiedenen Bildschirmen eingesehen werden:

- Anzeige des Messbereichs U, I, f
- Verlaufs-Bildschirm U, I, f RMS.

Das Auftreten des Auslösersignals wird auf beiden Bildschirmen mit einer gestrichelten Linie dargestellt.



Abbildung 3.43: Messbereichsanzeige der Transienten-Erfassungen

20:45	Aktuelle Zeit des Instruments
R:10	Zeigt die Datensatznummer in der MEMORY LIST (SPEICHERLISTE)
U1, U2, U3,	
Un, U12,	Echt-Effektivspannungswert – U _{Rms(10)}
U23, U31	
I1, I2, I3, In	Echt-Effektivstromwert – I _{Rms(10)}
THDp	Gesamtklirrfaktor Phasenspannung:
	THD _{U1} , THD _{U2} , THD _{U3} , THD _{UN}
THDpg	Gesamtklirrfaktor Phase-Phase-Spannung:
p,g: [1, 2, 3]	THD _{U12} , THD _{U23} , THD _{U31}
f	Frequenz auf Referenzkanal
04:43:04.541	Zeit an der Cursorposition.
0ms 125.0ms	Zeitskala zu Beginn und am Ende des Messbereichs-Bildschirms
150.4V 2040A	Spannungsskala und oberer / unterer Teil des Messbereich-Bildschirms

Tabelle 3.60: Symbole	und Abkürzungen des	Messgerät-Bildschirms
· · · · · · · · · · · · · · · · · · ·		

### Tabelle 3.61: Tastenfunktion

F1	ZOOM+-Vergrößern.ZOOM-+Verkleinern.		
	Auswählen zwischen den folgenden Signalen:		
	U Spannungswellenform anzeigen.		
	Stromwellenform anzeigen.		
FZ	<b>U+I</b> M Spannungs- und Stromwellenform als Einzeldiagramm anzeigen.		
	<b>U</b> /I • Spannungs- und Stromwellenform in zwei separaten Diagrammen anzeigen.		
F3	123N人本 Zwischen den Wellenform-Diagrammen Einzelphase, Neutral und alle Phasen auswählen.		
	Auswählen zwischen Phase, Neutral, Alle-Phasen und Ansicht:		
	123NA Anzeige der Transiente für Phase L1		
	123NA Anzeige des Transiente für Phase L2		
F3	123NA Anzeige des Transiente für Phase L3		
	123 N人 Anzeige der Transiente für Nullleiterkanal		
	123N人 Zusammenfassung aller Phasentrends		
F4	TREND Umschalten auf Anzeige RMS TREND.		
ENTER	Auswählen, welche Wellenform vertikal vergrößert / verkleinert werden soll (nur bei Diagrammen U/I oder U+I).		
	Vertikalen Zoomfaktor einstellen.		
	Cursorposition bewegen.		
ESC	Rückkehr zum Menübildschirm "TRANSIENTS SETUP".		

U,I,f -TREND		R:10	06:45
U2: 52.0 V	f:	49.992 Hz	
Thd: 1464%			
148.40		+-~~~~	ΜΛΛΛΛΛ
0ms 300 80		04:43:04.542	62.5ms
1			
Z00M+- U		1 <b>2</b> 3N人	SCOPE

Abbildung 3.44: RMS-Verlaufsanzeige der Transienten-Erfassung

Tabelle 3.62: Symbole und Abkürzungen des Messgerät-Bildschirms

20:45	Aktuelle Zeit des Instruments
<u>R:10</u>	Zeigt die Datensatznummer in der MEMORY LIST (SPEICHERLISTE)
U1, U2, U3, Un, U12, U23, U31	$Echt-Effektivspannungswert-U_{Rms(10)}$
I1, I2, I3, In	Echt-Effektivstromwert – I _{Rms(10)}
THDp	Gesamtklirrfaktor Phasenspannung:
	THD _{U1} , THD _{U2} , THD _{U3} , THD _{UN}
THDpg	Gesamtklirrfaktor Phase-Phase-Spannung:
p,g: [1, 2, 3]	THD _{U12} , THD _{U23} , THD _{U31}
f	Frequenz auf Referenzkanal
04:43:04.541	Zeit an der Cursorposition.
0ms 125.0ms	Zeitskala zu Beginn und am Ende des Messbereichs-Bildschirms
150.4U 2040A	Spannungsskala und oberer / unterer Teil des Messbereich- Bildschirms

### Tabelle 3.63: Tastenfunktion

F1	ZOOM+-Vergrößern.ZOOM-+Verkleinern.	
F2	Auswählen zwischen den folgenden Signalen: U Spannungswellenform anzeigen Stromwellenform anzeigen	
	Auswählen zwischen Phase, Neutral, Alle-Phasen und Ansicht:	
	123NA Anzeige der Transiente für Phase L1	
	123NA Anzeige des Transiente für Phase L2	
F3	123NA Anzeige des Transiente für Phase L3	
	123 N ^人 Anzeige der Transiente für Nullleiterkanal	
	123N人 Zusammenfassung aller Phasentrends	
<b>F4</b>	SCOPE Umschalten zur Ansicht SCOPE (MESSBEREICH)	
ENTER	Cursor wechseln zwischen Transienten-Messbereich und RMS-Verlauf.	

Vertikalen Zoom einstellen (nur wenn Cursor im Transienten-Messbereich).

Cursorposition bewegen.

Rückkehr zum Bildschirm "TRANSIENTS SETUP".

# 3.13 Ereignistabelle

In dieser Tabelle werden erfasste Spannungsabfälle, -anstiege und -unterbrechungen angezeigt. Beachten Sie, dass die Ereignisse in der Tabelle erscheinen, nachdem die Spannung wieder ihren Normalwert erreicht hat. Alle Ereignisse können nach Phase gruppiert oder getrennt werden. Dieses Umschalten geschieht mithilfe der Funktionstaste F1.

#### Group View (Gruppenansicht)

In dieser Ansicht werden Spannungsereignisse entsprechen IEC 61000-4-30 gruppiert (Details, s. Abschnitt 5.1.12). Im Folgenden finden Sie eine Tabelle mit einer Liste von Ereignissen. Jede Zeile in der Tabelle entspricht einem Ereignis, das mit "No." (Ereignisnummer), "Start" (Startzeit), "Duration" (Dauer) und Level des Ereignisses festgehalten wird. In der Spalte "T" werden die Eigenschaften des Ereignisses angezeigt (Details, s. folgende Tabelle).

VOLT	VOLTAGE EVENTS D1:48						
Date: 0	11.	01.0	)0				
No:	L	Sta	rt:		Т	Level:	Duration:
600		00:	00:03:539	ID:	S	233.9V	1.856 hrs
583		00:	00:03:532	ID:	S	231.9V	14.833 min
556		00:	00:03:537		S	233.8V	53.158 sec
542		00:	00:03:553		S	235.2V	3.129 hrs
520		00:	24:47:589		S	274.8V	3.530 sec
516		00:	24:03:056	ID		1.4V	43.543 sec
509		00:	23:02:225	ID		0.3V	1.300 sec
Σ	Pŀ						STAT

Abbildung 3.45: Spannungsereignisse in gruppierter Ansicht

Durch Eingeben von "Enter" bei einem bestimmten Ereignis können die Details geprüft. Das Ereignis wird nach Phasen unterteilt entsprechend der Startzeit aufgelistet. Die Spalte "T" zeigt den Übergang von einem Ereigniszustand zum nächsten (Details, s. folgende Tabelle).

VOLT	Ά	GE EVENT	s		01:48
Date: (	)1.	01.00			
No:	L	Start:	Т	Level:	Duration:
553	1	00:00:03:537	N->S	232.4V	53.158 sec
554	2	00:00:03:537	N->S	233.8V	3.129 hrs
555	3	00:00:03:537	N->S	233.7V	3.530 sec

Abbildung 3.46: Spannungsereignisse in gruppierter Ansicht

	Strom-Recorderstatus:							
	RECORDER ISLAKIV							
	RECORDER beschäftigt (holt Daten aus Speicher)							
	RECORDER ist nicht aktiv							
Datum	Datum, an dem das ausgewählte Ereignis eingetreten ist							
No.	Eindeutige Nummer (ID) für das Ereignis							
L	Gibt die Phasenspannung bzw. Phase-Phasen-Spannung an, wo das Ereignis eingetreten ist: 1 – Ereignis an Phase U ₁ 2 – Ereignis an Phase U ₂ 3 – Ereignis an Phase U ₃ 12 – Ereignis an Spannung U ₁₂ 23 – Ereignis an Spannung U ₂₃ 31 – Ereignis an Spannung U ₃₁ <b>Hinweis:</b> Diese Angabe wird nur in den Ereignisdetails, da ein gruppiertes Ereignis mehrere Phasenereignisse haben kann.							
Start	Startzeit (erstes U _{Rms(1/2)} ), bei der der Grenzwert durchlaufen wurde.							
Т	Gibt den Typ des Ereignis oder Übergangs an: D – Dip (Abfall) I – Interrupt (Unterbrechung) S – Swell (Anstieg) N $\rightarrow$ D Übergang vom normalen Zustand zum Abfall N $\rightarrow$ S Übergang vom normalen Zustand zum Anstieg D $\rightarrow$ I Übergang von Unterspannung zur Unterbrechung							
Level	Minimal- bzw. Maximalwert in Ereignis U _{Dip} , U _{Int} , U _{Swell}							
Duration (Dauer)	Dauer des Ereignisses							

Tabelle 3.64: Symbole und Abkürzungen des Messgerät-Bildschirms

### Tabelle 3.65: Tastenfunktionen

E	Σ ^{PH}	Die gruppierte Ansicht wird angezeigt. Taste drücken, um in die Ansicht "PHASE" umzuschalten.										
	ΡΗ Σ	Die Phasen-A Ansicht "GRO	Die Phasen-Ansicht wird angezeigt. Taste drücken, um in die Ansicht "GROUP" umzuschalten.									
	STAT	Zusammenfass anzeigen:	sung der	Ereigniss	e (na	ach 7	Гур und	Phasen	sortiert)			
			VOLTAG	GE EVENTS			01:11					
				L1 L	.2 L	.3						
			U	226.6 23	27.7 2	28.4V						
		EVENTS										
			Swell:	6	5	7						
			Dip:	3	1	2						
			Inter.:	0	0	0						
			Start:	17:17:14	01.01	.08						
			Curr.:	01:11:12	03.02	2.08						
	EVENTS	Zurück zur Gru	uppenan	isicht.								



#### Die Phasen-Ansicht

In der Phasenansicht werden die Spannungsereignisse nach Phase sortiert angezeigt. Das ist besonders praktisch bei der Fehlersuche. Zudem kann der Benutzer Filter verwenden, um nur einen bestimmten Ereignistyp an einer bestimmten Phase zu betrachten. Die erfassten Ereignisse werden in einer Tabelle aufgelistet, wobei jede Zeile ein Phasenereignis darstellt. Jedes Ereignis hat wird Ereignisnummer, Ereignisstartzeit, Dauer und Level festgehalten. In der Spalte "T" wird der Ereignistyp angezeigt (Details, s. folgende Tabelle).

VOLT	VOLTAGE EVENTS 01:05							
Date: (	Date: 01.01.00							
No:	L	Sta	rt:			Г	Level:	Duration:
599	3	00:	00:23	:845		S	232.5V	
595	2	00:	00:03	:539		S	233.9V	
594	1	00:	00:03	:539		S	232.3V	
598	3	00:	00:22	:165		0	37.4V	1.680 sec
597	3	00:	00:22	:165		L	0.3V	1.670 sec
596	3	00:	00:03	:539		5	229.6V	18.626 sec
571	3	00:	00:40	:595		S	231.4V	
568	2	00:	00:03	:532		S	231.9V	
582	1	00:	00:45	:037		S	229.7V	
573	1	00:	00:43	456		)	11.8V	1.581 sec
PH		2	Σ	DIP	,		²³ Σ	STAT

Abbildung 3.47: Bildschirm Spannungsereignisse

Es können auch die Details jedes einzelnen Spannungsereignisses sowie die statistischen Daten aller Ereignisse betrachtet werden. Unter Statistics (Statistiken) werden die Zählregister für jeden individuellen Ereignistyp nach Phase angezeigt.

Tabelle 3.66: Symbole und Abkürzungen des Messgerät-Bildschirms

	Aktueller Recorderstatus
	RECORDER ist aktiv
	RECORDER beschäftigt (holt Daten aus Speicher)
	RECORDER ist nicht aktiv
Datum	Datum, an dem das ausgewählte Ereignis eingetreten ist
No.	Eindeutige Nummer (ID) für das Ereignis

L	Gibt die Phasenspannung bzw. Phase-Phasen-Spannung an, wo das Ereignis eingetreten ist: 1 – Ereignis an Phase U ₁ 2 – Ereignis an Phase U ₂ 3 – Ereignis an Phase U ₃ 12 – Ereignis an Spannung U ₁₂ 23 – Ereignis an Spannung U ₂₃ 31 – Ereignis an Spannung U ₃₁
Start	Startzeit (erstes U _{Rms(1/2)} ), bei der der Grenzwert durchlaufen wurde.
Т	Gibt den Typ des Ereignis oder Übergangs an: D – Dip (Abfall) I – Interrupt (Unterbrechung) S – Swell (Anstieg)
Level	Minimal- bzw. Maximalwert in Ereignis U _{Dip} , U _{Int} , U _{Swell}
Duration (Dauer)	Dauer des Ereignisses.

### Tabelle 3.67: Tastenfunktion

	Σ ^{PH}	Die gruppierte Ansicht wird angezeigt. Taste drücken, um in die Ansicht "PHASE" umzuschalten.								
	PH Σ	Die Phasen-Ansicht wird angezeigt. Taste drücken, um in die Ansicht "GROUP" umzuschalten.								
		Ereignis nach Typ filtern:								
	$\Sigma$ DIP	Alle Ereignis anzeigen								
F2	DIP INT	Nur Spannungsabfall-Ereignisse ("Dips") anzeigen								
	INT SWELL	Nur Spannungsunterbrechungsereignisse ("Interrupts") anzeigen								
	SWELL $\Sigma$	Nur Spannungsanstiegsereignisse ("Swells") anzeigen								
		Ereignis nach Phase filtern:								
	1 ²³ Σ	Nur Ereignis an Phase 1 anzeigen								
F3	1 <b>2</b> 3Σ	Nur Ereignis an Phase 2 anzeigen								
_	12 <b>3Σ</b>	Nur Ereignis an Phase 3 anzeigen								
	123 <b>∑</b>	Alle Ereignis anzeigen								
	STAT	Zusammenfassung der Ereignisse (nach Typ und Phasen sortiert) anzeigen:								
		VOLTAGE EVENTS 01:11								
		L1 L2 L3								
		U 226.6 227.7 228.4V								
F4		Swell: 6 5 7								
_		Dip: 3 1 2								
		Ctart: 17:17:14 03:02:30								
		Curr.: 01:11:12 01.01.00								
	EVENTS	Zurück zur Gruppenansicht.								

Details des ausgewählten Ereignisses anzeigen: VOLTAGE EVENTS 01:06 Dip: Min: L3 37.4V 00:00:22:165 01.01.00 Start: End: 00:00:23:845 01.01.00 Duration: 00:00:00:01:680 Ereignis auswählen. Beenden der Detailansicht eines Ereignisses. ESC Rückkehr zum Menübildschirm RECORDER".

# 3.14 Alarmtabelle

Das Menü zeigt die Liste der ausgelösten Alarme. Die Alarme werden tabellarisch gelistet angezeigt, wobei jede Zeile einem Alarm entspricht. Jedem Alarm werden folgende Parameter zugeordnet: Startzeit, Phase, Typ, Flanke, Min.-/Max.-Wert und Dauer (siehe 3.16.3 Einstellung von Alarmen und 5.1.13 Details zur Alarmmessung).

ALARMS LIST D2:06							
Date: 01.01.00	Date: 01.01.00						
Start:	L	Т	Slope:	:Min/Max:	Duration:		
01:56:59:921	2	pstm	RISE	0.664	59.997 sec		
01:47:59:785	2	pstm	RISE	0.791	3. 0 min		
01:11:59:863	2	pstm	RISE	0.698	1. 0 min		
01:04:59:930	2	pstm	RISE	0.728	1.983 min		
01:01:59:823	2	pstm	RISE	0.795	1. 0 min		
00:59:59:950	2	pstm	RISE	0.666	59.834 sec		
00:55:59:834	2	pstm	RISE	0.767	1. 0 min		
00:44:29:890	1	U	FALL	230.0V	401 ms		
00:44:26:690	1	U	RISE	230.1V	400 ms		
00:44:25:890	1	U	RISE	230.1V	400 ms		
		ΣUlf	12	3NT \Sigma 📗			

Abbildung 3.48: Bildschirm Alarmliste

Tabelle 3.68: Symbole und Abkürzungen des Messgerät-Bildschirms

	Strom-Recorderstatus:							
	RECORDER ist aktiv							
	RECORDER beschäftigt (holt Daten aus Speicher)							
	RECORDER ist nicht aktiv							
Datum	Datum, an dem der ausgewählte Alarm eingetreten ist							
Start	Startzeit des Alarms (erstes U _{Rms} , bei dem der Grenzwert durchlaufen wurde)							
L	Gibt die Phasenspannung bzw. Phase-Phasen-Spannung an, wo das							
	1 Alarm an Dhasa L							
	$I = \text{AldIII} \text{ dir Fildse L}_1$							
	$Z = Alam an Phase L_2$							
	3 – Alarm an Phase L ₃							
	12 – Alarm an Leitung L ₁₂							

	23 – Alarm an Leitung L ₂₃
	31 – Alarm an Leitung L ₃₁
Slope	Gibt den Alarmübergang an:
(Steigung)	<ul> <li>Anstieg – Parameter hat Grenzwert überschritten</li> </ul>
	<ul> <li>Abfall – Parameter hat Grenzwert unterschritten</li> </ul>
Level	Minimal- bzw. Maximalwert des Parameters während des Auftretens des Alarms
Duration	Alarmdauer
(Dauer)	

### Tabelle 3.69: Tastenfunktion

		Alarme anhand der folgenden Parameter filtern:
	Σ ^{Ulf}	Alle Alarme
	Ulf ^{PWR}	Spannungsalarme
	PWR FLICK	Leistungsalarme
F2	FLICK SYM	Flickeralarme
	SYM H SYM ^{Harm}	Asymmetriealarme
	Η ^{iH} HARMS ^Σ	Oberwellenalarme
	iH ^{sig}	Oberwellenalarme (Interharmonische)
	SIG ²	Signalalarme
		Alarme anhand der Phase, an der der Alarm aufgetreten ist, filtern:
	<b>1</b> 23ΝΤΣ	Nur Alarme für Phase 1 anzeigen
	1 <b>2</b> 3ΝΤΣ	Nur Alarme für Phase 2 anzeigen
F3	12 <b>3</b> ΝΤΣ	Nur Alarme für Phase 3 anzeigen
_	123 <b>Ν</b> ΤΣ	Nur Alarme am Nullleiterkanal anzeigen
	123Ν <b>Τ</b> Σ	Nur Alarme an Kanälen anzeigen, die nicht von einem Kanal abhängen
	123NT ∑	Alle Alarme anzeigen
F4	ACTIVE	Liste der aktiven Alarme anzeigen. Die Liste enthält alle Alarme, die zwar begonnen haben, aber nicht beendet wurden. Die in dieser Tabelle verwendeten Bezeichnungen sind die gleichen, wie in diesem Abschnitt.
		Einen Alarm auswählen
FSC		Bildschirm Aktive Alarmliste beenden.
		Rückkehr zum Menübildschirm RECORDER".

# 3.15 Memory List (Speicherliste)

Mithilfe dieses Menüs kann der Benutzer durch gespeicherte Datensätze blättern und diese betrachten. Durch Aktivieren dieses Menüs werden die Daten zum letzten Datensatz eingeblendet.

MEMORY LIST		00:19
Record No:		7
Туре:	Inrus	sh logging
Signals:		6
Start:	01:47:13	01.01.00
End:	01:47:16	01.01.00
Size (kB):		4
Saved Records:		7
CLEAR		

Abbildung 3.49: Bildschirm Speicherliste

Tabelle 3 70 [.] S	vmhole und	Abkürzungen	des Messa	erät-Bildschirms
	ynnoole unu	Abhaizangen	uco mcoog	

	Aktueller Recorderstatus			
	RECORDER ist aktiv			
	RECORDER beschäftigt (holt Daten aus Speicher)			
	RECORDER ist nicht aktiv			
20:45	Aktuelle Zeit des Instruments			
Record No (Datensatznummer)	Nummer des ausgewählten und im Detail angezeigten Datensatzes.			
Туре (Тур)	<ul> <li>Anzeige des Datensatztyps, wobei folgende Typen zur Auswahl stehen:</li> <li>Inrush Logging (Einschaltspitzen-Protokollierung),</li> <li>Momentanwert einer Wellenform,</li> <li>Aufzeichnung Transienten,</li> <li>Aufzeichnung Wellenform,</li> <li>allgemeine Aufzeichnung.</li> </ul>			
Signals (Signale)	Anzahl der aufgezeichneten Signale.			
Start	Startzeit der Aufzeichnung.			
End (Ende)	Stoppzeit der Aufzeichnung.			
Size (kB) (Größe (kB))	Aufzeichnungsgröße in Kilobytes (kB).			
Saved records (Gespeicherte Aufzeichnungen)	Gesamtzahl der Aufzeichnungen im Speicher.			

#### Tabelle 3.71: Tastenfunktionen

F1	VIEW	Details des aktuell ausgewählten Datensatzes anzeigen.
F2	CLEAR	Letzten Datensatz löschen. Um den Speicher komplett zu löschen, die Datensätze jeweils einzeln löschen.



## 3.15.1 Aufzeichnen

Dieser Datensatztyp wird vom RECORDER produziert. Die erste Seite der Ansicht Record (Aufzeichnen) ist ähnlich wie das Menü RECORDER aufgebaut, wie die folgende Abbildung zeigt.

RECORDER	R:10 18:23
Record Type:	Record
Interval:	1s
Signals	173
Duration	00 h 05 m 12 s
Include active events	0
Include active alarms	0
Start time	18:13:10 26.10.09

#### VIEW

Abbildung 3.50: Erste Seite des Menüs Normal Record (Normales Aufzeichnen) im Menü MEMORY LIST (SPEICHERLISTE)

Tabelle 3.1	72: Beschreibun	q der Recor	dereinstellungen
		9	

20:45	Aktuelle Zeit des Instruments			
R:10	Zeigt die Datensatznummer in der MEMORY LIST (SPEICHERLISTE)			
Aufzeichnungstyp: RECORD	Zeigt, dass der Datensatz vom GENERAL RECORDER erstellt wurde.			
Intervall 1s	Zeigt das Intervall, das der GENERAL RECORDER verwendet.			
Signale:173	Zeigt die Anzahl der Signale im Datensatz.			
(max, min, mit)				
Speichertyp: Linear	Zeigt an, wie der Speicher organisiert ist.			
Dauer: 00h 05m 12s	Zeigt die Dauer der Aufzeichnung.			
Aktive Ereignisse aufzeichnen: 4	Zeigt die Anzahl der erfassten Ereignisse.			
Aktive Alarme aufzeichnen: 0	Zeigt die Anzahl der erfassten Alarme.			
Start time (Startzeit)	Zeigt die Startzeit der Aufzeichnung.			

#### Tabelle 3.73: Tastenfunktion

	Sc	haltet zum Me	nübildschir	m "CHANNE	LS SETUP".	
	De Dri	r Benutzer k licken der Tas	ann hier l te ^[1] (VI	bestimmte S EW) beobacl	ignalgruppen nten.	durch
F1	CH/ VIEW Po Fli Sy Ha Int	ANNELS SETUP I, f wer & Energy ckers m rmonics erharmonics	R:6 Off On On ↓On Off	15:25		
	V	IEW				
	Parameter aus	wählen (nur in	n Menü C⊦	IANNELS SE	TUP).	
ESC	Zurück zum vo	rherigen Meni				

Durch Betätigen der Taste ^(F1) **VIEW** im Menü CHANNELS SETUP (KANALEINRICHTUNG) wird der Bildschirm TREND eingeblendet. Der Typ TREND ist abhängig von der Cursorposition. In der folgenden Abbildung ist der dafür typische Bildschirm zu sehen.

U,I,f TRE	END			R:10		18:19
U1 🗴	245.6	V	U1	I	245.6	V
U1 X	245.6	٧				
■245.6 V ¥:	214.9 V				<u>t: 00D 0</u>	0:00:10
					10.00.1	<b></b>
Z00M-+	U	I	12	3N人	10.09 1	8:13:20 f

Abbildung 3.51: Einsehen der Verlaufsdaten U, I, f

Tabelle 3.74: Symbole und Abkürzungen des Messgerät-Bildschirms

R:8	Zeigt die Datensatznummer in der MEMORY LIST (SPEICHERLISTE)
20:45	Aktuelle Zeit des Instruments
۲	Zeigt die Cursorposition im Diagramm.
Up, Upg:	Aufgezeichnete Maximal- ( <b>革</b> ), Mittel- ( <b>북</b> ) und Minimal- ( <b>東</b> ) Werte von Phasenspannung U _{pRms} bzw. Leiterspannung U _{pgRms} für das per Cursor ausgewählte Zeitintervall.
lp:	Aufgezeichnete Maximal- (조), Mittel- (Ⅹ) und Minimal- (Ⅹ) Werte des Stroms I _{pRms} für das per Cursor aufgezeichnete Zeitintervall.

t: 00D 00:13:23	Zeit und Cursorposition hinsichtlich Startzeit der Aufzeichnung.
<b>▲</b> 230.6 V <b>★</b> 225.3 V	Maximale und minimale Spannung Up/Upg im angezeigten Diagramm;
<b>▲</b> 947.1A <b>▲</b> 0.0 A	Maximaler und minimaler Strom Ip im angezeigten Diagramm.
26.10.09 18:13:20	Zeituhr an der Cursorposition.

#### Tabelle 3.75: Tastenfunktionen

F1	Z00M-+ Z00M+-	Vergrößern. Verkleinern.	
F2		Auswählen zwischen den folgenden Optionen:	
	U	Spannungsverlauf anzeigen;	
	VH	Stromverlauf anzeigen;	
	U+I M	Spannungs- und Stromverlauf in einem einzelnen Diagramm anzeigen;	
	<b>U/I</b> V	Spannungs- und Stromverlauf in zwei separaten Diagrammen anzeigen.	
F3		Auswählen zwischen Phase, Neutral, Alle-Phasen und Ansicht:	
	123N人	Anzeige des Trends (Verlaufs) für Phase L1	
	1 <b>2</b> 3N人	Anzeige des Trends (Verlaufs) für Phase L2	
	12 <b>3</b> N人	Anzeige des Trends (Verlaufs) für Phase L3	
	123 <b>N</b> 人	Anzeige des Trends (Verlaufs) für Neutral	
	^{123N} 人	Zusammenfassung aller Phasentrends	
F4	f	Frequenzverlauf anzeigen.	
ENTER	Auswählen, welche Wellenform vergrößert / verkleinert werden soll (nur in U/I bzw. U+I Verläufen)		
	Mit dem Cursor I durch die protokollierten Daten blättern.		
ESC	Zurück zum Menübildschirm "CHANNELS SETUP".		

**Hinweis:** Die übrigen Aufzeichnungsdaten (Leistung, Oberwellen, etc.) werden ähnlich bearbeitet wie in der vorstehenden Tabelle.

### 3.15.2 Momentanwert einer Wellenform

Dieser Aufzeichnungstyp wird mit dem Vorgang Hold  $\rightarrow$  Save (Festhalten  $\rightarrow$  Speichern) erstellt. Die erste Seite dieses Vorgangs ist ähnlich wie die Recorderansicht aufgebaut und wird in der folgenden Abbildung gezeigt.
U,I,f - METE	ER	R:12	L1 00:25	U,I,f -	SCOPE		R:12	00:13
	U		1	U12:	403.4 V	f:	49.974 Hz	
RMS	226.9	v :	887.1 A	Thd:	3.1%	, D		
тно	3.3	%	<b>3.2</b> %	12050				
CF	1.37		1.38		$\sim$		$\wedge$	$\wedge$
PEAK	379.1	v	1253 A	<u>\</u>		<u>\</u>		/
MAX 1/2	269.1	v	3919 A				$/ \setminus$	
MIN 1/2	160.2	v 8	8 <b>50.3</b> A		,	$\sim$		$\checkmark$
Freq	49.968	Ηz		Oms				62 <b>.</b> 5m
HOLD		123N.X.∆	SCOPE	Z00	M+-	U	123 △	METER

Abbildung 3.52: Erste Seite des Menüs Normal Record (Normales Aufzeichnen) im Menü MEMORY LIST (SPEICHERLISTE)

Die Bildschirmsymbole und Tastenfunktionen finden Sie in den entsprechenden Beschreibungen von METER (MESSWERTE), SCOPE (MESSBEREICH), BAR graph (BALKEN-Diagramm), PHASE DIAG. (PHASENDIAGR.) in den betreffenden Abschnitten (U, I, f; Leistung etc.)

### 3.15.3 Wellenform-Datensatz⁸

Dieser Datensatztyp wird vom Wellenform-RECORDER produziert. Details zur Bearbeitung und Betrachtung der Daten s. Abschnitt Wellenform-E3.10.3

### 3.15.4 Protokoll für Einschaltspitze

Dieser Datensatztyp wird vom Inrush logger (der Einschaltspitzen-Protokollierung) erstellt. Details zur Bearbeitung und Betrachtung der Daten s. Abschnitt 3.11.3.

### 3.15.5 Transienten-Aufzeichnung⁹

Dieser Datensatztyp wird vom Transienten-RECORDER produziert. Details zur Bearbeitung und Betrachtung der Daten s. Abschnitt 3.12.3.

# 3.16 Setup-Menü Messung

Im Menü "MEASUREMENT SETUP" findet man allgemeine Parameter zur Konfiguration sowie zum Speichern dieser Parameter.



Abbildung 3.53: Menü "MEASUREMENT SETUP"

⁸ nur PowerQ4 Plus

⁹ nur PowerQ4 Plus

Tabelle 3.76: Be	schreibung der	Setup-Optionen
------------------	----------------	----------------

Anschlusseinrichtung	Einrichten der Messungsparameter.
Ereigniseinrichtung	Einrichten der Ereignisparameter.
Alarmeinrichtung	Einrichten der Alarmparameter.
Signaleinrichtung ¹⁰	Einrichten der Signalparameter

#### Tabelle 3.77: Tastenfunktion

	Funktion aus dem Menü "SETUP" auswählen.
ENTER	Das ausgewählte Element aktivieren
ESC	Zurück zum Hauptmenü-Bildschirm "MAIN MENU".

## 3.16.1 Verbindungseinrichtung



Abbildung 3.54: Setup-Bildschirm "CONNECTION"

Tabelle 3.78: Beschreibung des Verbindungs-Setups

	Nennspannungsbereich Nennspannungsbereich Nennspannung des <b>Ne</b>	n auswählen. Den n entsprechend der <b>tzes</b> auswählen.	
	1-L und 4-L	3-L	
Nonnhoroigh	50 ÷ 110V (L-N)	86÷190 V (L-L)	
Nennbereich	110 ÷ 240V (L-N)	190÷415 V (L-L)	
	240 ÷ 1000 V (L-N)	415÷1730 V (L-L)	
	Hinweis: Die Genauigk 50% höher als die ausg	eit des Instruments reicht jewählte Nennspannung.	
Voltage ratio (Spannungsverhältnis)	Skalierungsfaktor für den Spannungswandler. Diesen Faktor verwenden, wenn externe Spannungs- wandler oder -teiler zum Einsatz kommen sollen. Alle Ablesewerte sind dann bezogen auf die		

¹⁰ nur PowerQ4 Plus

	Primärspannung. Details zum Anschließen, s. 4.2.2. <b>Hinweis:</b> Der Skalierfaktor kann nur im niedrigsten Spannungsbereich ausgewählt werden! <b>Hinweis:</b> Der Maximalwert beträgt 4000
Select Clamps         09:47           Select Clamps         09:47           Select Clamps         09:47           Subscript Stress         00:40           A1120 (300A)         441120 (30A)	<ul> <li>Die Stromzangen für Phasenstrommessungen auswählen.</li> <li>Hinweis: Bei intelligenten Stromzangen (A 1227, A 1281) immer "Smart clamps" auswählen.</li> <li>Hinweis: Siehe Abschnitt 4.2.3, Details zu weiteren Stromzangeneinstellungen.</li> </ul>
Neutralleiterstrom- Zangen SHIUP: Measuring: Clamp 09:47 Select Clamps Smart Clamps	Die Neutralleiter-Klemmen für Phasenstrom- messungen auswählen.
Custom A1033 (1000A) A1069 (100A) A1122 (5A) A1037 (5A) A1137 (5A)	<b>Hinweis:</b> Bei intelligenten Stromzangen (A 1227, A 1281) immer "Smart clamps" auswählen.
A1120 (300A) +A1120 (30A)	<b>Hinweis:</b> Siehe Abschnitt 4.2.3, Details zu weiteren Stromzangeneinstellungen.
Connection (Anschluss)Image: state sta	<ul> <li>Methoden zum Anschließen des Instruments an Multiphasensysteme (Details s. 4.2.1).</li> <li>1W: 1-Phasen-2-Drahtsystem;</li> <li>3W: 3-Phasen-3-Drahtsystem;</li> <li>4W: 3-Phasen-4-Drahtsystem.</li> </ul>
Synchronization (Synchronisierung)	<ul> <li>Synchronisierungskanal. Der Kanal wird für die Synchronisierung des Instruments mit der Frequenz des Netzes verwendet. Außerdem wird über diesen Kanal auch eine Frequenzmessung durchgeführt. Je nach Anschlussart kann der Benutzer Folgendes auswählen: <ul> <li>1W: U1 oder I1.</li> <li>3W: U12 oder I1.</li> <li>4W: U1, I1.</li> </ul> </li> </ul>
Systemfrequenz	Systemfrequenz auswählen. • 50 Hz • 60 Hz

	Werkseinstellungen einstellen. Die Werkseinstel- lungen sind wie folgt:
	Nennbereich : 110 V ÷ 240 V (L-N)
	Spannungsverhältnis: 1:1;
Default parameters	Phasenstromzangen: Intelligente Stromzangen;
(Standardparameter)	Neutralleiterstromzangen: Intelligente Stromzangen;
	Verbindung: 4W;
	Synchronisierung: U1
	Systemfrequenz: 50 Hz.

#### Tabelle 3.79: Tastenfunktionen

	Ausgewählten Parameterwert ändern.
	Parameter für Verbindungseinstellungen auswählen.
ENTER	Untermenü aktivieren. Standardparameter bestätigen.
ESC	Zurück zum Menübildschirm "MEASUREMENT SETUP".

### 3.16.2 Event Setup (Ereigniseinrichtung)

In diesem Menü können die Spannungsereignisse und ihre Parameter eingerichtet werden. Weitere Details hinsichtlich Messmethoden s. 5.1.12. Erfasste Ereignisse können im Menü "EVENTS TABLE" (EREIGNISSETABELLE) beobachtet werden. Details, s. 3.13.

SETUP:Voltage Eve	ents 01:21
Nominal voltage:	230.0V
Swell:	253.0V +10.0%
Dip:	207.0V - 10.0%
Interrupt:	11.5∨ 5.0%
Capture Events:	Disabled

Abbildung 3.55: Setup-Bildschirm Spannungsereignisse

Tabelle 3.80: Beschreibung des Spannungsereignis-Setups

Nominal voltage	Nennspannung einstellen
(Nennspannung)	
Swell (Schwellenwert)	Den Schwellenwert für den Anstieg einstellen.
Dip (Abfall)	Schwellenwert für den Spannungsabfall einstellen.
Interrupt	Schwellenwert für die Unterbrechung einstellen.
(Unterbrechung)	
Capture Events	Die Erfassung von Ereignissen aktivieren oder deaktivieren
(Ereigniserfassung)	

**Hinweis:** Ereigniserfassung nur aktivieren, wenn Sie die Ereignisse erfassen wollen, ohne sie aufzuzeichnen. Falls Sie die Ereignisse nur während der Aufzeichnung erfassen möchten, folgende Option wählen:

Aktive Ereignisse einschließen: On im Menü GENERAL RECORDER.

**Hinweis:** Im Falle von Verbindungsart: 1W, wird empfohlen, die ungenutzten Spannungseingänge an Spannungseingang N anzuschließen, um einen Fehlauslöser zu vermeiden.

Tabelle 3.81: Tastenfunktion



### 3.16.3 Alarm Setup (Alarm einrichten)

Es können bis zu 10 verschiedene Alarme definiert werden. Diese können auf beliebigen Messgrößen, die das Instrument messen kann, basieren. Weitere Details hinsichtlich Messmethoden s. 5.1.13. Erfasste Ereignisse können im Menü "ALARMS TABLE" (ALARMTABELLE) beobachtet werden. Details, s. 3.14.



Abbildung 3.56: Setup-Bildschirm Alarme

Tabelle 3.82: Beschreibung des	Alarm-Setups
--------------------------------	--------------

1. Spalte	Erst den Alarm aus der Gruppe von Messungen und dann
(f, P+ in der	die Messung selbst auswählen.
vorstehenden Abbildung)	
2. Spalte	Phasen für die Alarmerfassung auswählen
(Tot in der vorstehenden	<ul> <li>L1 – Alarme an Phase L₁;</li> </ul>
Abbildung )	<ul> <li>L2 – Alarme an Phase L₂;</li> </ul>
	<ul> <li>L3 – Alarme an Phase L₃;</li> </ul>
	<ul> <li>LN – Alarme an Phase N;</li> </ul>

	<ul> <li>L12 – Alarme an Leitung L₁₂;</li> </ul>		
	<ul> <li>L23 – Alarme an Leitung L₂₃;</li> </ul>		
	<ul> <li>L31 – Alarm an Leitung L₃₁;</li> </ul>		
	ALL – Alarme an jeder Phase;		
	• Tot – Alarme bei Leistungssummen oder nicht phasenbezogenen Messungen (Frequenz, Asymmetrie).		
3. Spalte	Die Auslösemethode auswählen:		
(">" in vorstehender	< – auslösen, wenn die Messgröße unter den Schwellenwert		
Abbildung)	fällt (FALL);		
	<ul> <li>– auslösen, wenn der Messgröße den Schwellenwert übersteigt (RISE);</li> </ul>		
4. Spalte	Schwellenwert		
5. Spalte	Minimale Alarmdauer. Nur auslösen, wenn der		
	Schwellenwert für die festgelegte Zeitdauer über- bzw.		
	unterschritten wird.		
	Hinweis: Es wird empfohlen, den Flickermessungs-		
	Recorder aut 10 Minuten einzustellen.		

#### Tabelle 3.83: Tastenfunktionen

E2 CLEAR	Ausgewählten Alarm löschen.	
F3 CLRALL	Alle Alarme löschen.	
F4 ENABLE DISABL	Alarme aktivieren oder deaktivieren. <b>Hinweis:</b> Alarmerfassung nur aktivieren, wenn Sie die Ereignisse erfassen wollen, ohne sie aufzuzeichnen. Falls Sie Alarme während des Aufzeichnens beobachten wollen, nutzen Sie die Option Aktive Alarme einschließen: On im Menü RECORDER.	
ENTER	Zur Einrichtung eines Alarms auf Untermenü zugreifen oder es verlassen.	
	Cursortasten. Parameter auswählen	
	Cursortasten. Parameter / geänderten Wert auswählen.	
ESC	Alarmeinrichtung bestätigen Zurück zum Menübildschirm "MEASUREMENT SETUP".	

## 3.16.4 Signaleinrichtung¹¹

Netzsignale werden in vier Gruppen untergliedert:

- Rundsteueranlagen (110 Hz bis 3000 Hz);
- Trägersysteme mit Mittelfrequenz-Leistungsleitungen (3kHz 20kHz);
- Trägersysteme mit Funkfrequenz-Leistungsleitungen (20kHz 148,5kHz);
- Netzmark-System.

Der Benutzer kann zwei verschiedene Signalfrequenzen definieren. Die Signale werden als Auslöser für benutzerdefinierte Alarme verwendet und können in die

¹¹ nur PowerQ4 Plus

Aufzeichnungen integriert werden. Siehe Abschnitt 3.16.3, Alarmeinrichtung. Im Bereich 3.7.3 finden Sie Anweisungen zum Start der Aufzeichnung.

SETUP:Signaling Signal 1	<b>&gt;</b> 19:00
Frequency : 210.0 Hz	
Signal 2 Frequency : 214.0 Hz	

Abbildung 3.57: Setup-Bildschirm Signale

Tabelle 3.84: Tastenfunktionen

<b>()</b>	Frequenzwert ändern.
	Zwischen Signal 1 und Signal 2 hin- und herschalten.
ESC	Zurück zum Menübildschirm "MEASUREMENT SETUP".

# 3.17 Allgemeines Setup

Im Menü "GENERAL SETUP" (Allgemeines Setup) können Kommunikationsparameter, Echtzeituhr, Sprache eingesehen, konfiguriert und gespeichert werden.



Abbildung 3.58: Menü "GENERAL SETUP"

Tabelle 3.85: Beschreibung der Optionen des allgemeinen Setups

Communication	Kommunikation (Baudrate und Quelle) einrichten.
(Kommunikation)	
Time & Date	Einstellen von Zeit und Datum.
(Zeit & Datum)	
Language (Sprache)	Sprache auswählen.
Clear Memory	Instrumentenspeicher löschen.
(Speicher löschen)	
Instrument info	Informationen über das Instrument.
(Instrumenten-	
information)	

Manda a da / Fatada a da	Instrument verriegel	າ, um	nicht	autorisierte	Verwendung	zu
vernegem / Entriegem	vermeiden.					

Tabelle 3.86: Tastenfunktionen



### 3.17.1 Communication (Kommunikation)

In diesem Menü können der Kommunikationsanschluss (RS232, USB oder GPRS) und die Datenübertragungsrate eingerichtet werden.

CON	MUNICATION 🛛 🕨 17:11
Source:	GPRS
Baud rate:	115200
GPRS:	Enabled
Number: PIN:	0038631344088
PC Client key:	123
Username:	mobitel
Password:	internet
APN:	internet
	INIT

Abbildung 3.59: Setup-Bildschirm für Kommunikation

Tabelle 3.87:	Beschreibung	der Optionen	des Kommi	unikations-Setups
	J			

Queller	RS-232-,	USB-	oder	GPRS-Kommunikationsanschluss	
Quelle.	auswählen.				
Baudrate:	Anschlussg	eschwind	igkeit aus	swählen.	
CDDS*	Status der G	SPRS-Kor	nmunikati	on anzeigen. GPRS ist erst aktiviert,	
GFK3.	nachdem der INIT-Vorgang erfolgreich durchgeführt wurde.				
Tolofonnummor*:	GPRS-Mod	em-Telefo	onnumme	r. Die Telefonnummer wird durch	
relefonnunmer.	die SIM-Kar	te definie	rt.		
DIN*•	PIN-Code de	er SIM-Ka	rte. Optio	naler Parameter, der nur eingegeben	
	werden mus	s, wenn d	ies auf de	r SIM-Karte aktiviert wurde.	
	Geheimnum	nmer für	höhere	Sicherheit, der Kommunikations-	
Geheimcode*:	verbindung.	Vor Ver	bindungs	aufbau muss dieselbe Nummer in	
	PowerView	v2.0 eing	egeben v	verden.	
Benutzername:	APN-Nutzername, Bezug vom Mobilfunkanbieter.				
Passwort*:	APN-Passwort, Bezug vom Mobilfunkanbieter.				
	Zugangspur	nktname.	Einzigar	tiges Merkmal für die Verbindung	
	zum Netzwe	erk, Bezug	g vom Mo	bilfunkanbieter.	

* Die für die GPRS-Kommunikation benötigten Einstellungen werden in Abschnitt 4.2.6 (optionales Zubehör A 1356) dargestellt. Weitere Informationen erhalten Sie im Benutzerhandbuch des GPRS-Modem A 1356.

#### Tabelle 3.88: Tastenfunktionen

F4	INIT GPRS-Modem initialisieren. Einzelheiten, s. 4.2.6.
	Änderung der Kommunikationsquelle (RS-232, USB) Die Datenübertragungsrate von 2400 Baud bis 115200 Baud (für RS232) und von 2400 Baud bis 921600 Baud (für USB) verändern. Bewegung der Cursor-Position bei der Eingabe der GPRS-Modem- parameter.
00	Cursortasten. Parameter auswählen Wechseln zwischen Zahlen- und Buchstabeneingabe für die Eingabe der GPRS-Parameter.
ENTER	Ausgewählte Parameter des GPRS-Modems bestätigen.
ESC	Zurück zum Menübildschirm "GENERAL SETUP".

### 3.17.2 Time & Date (Zeit & Datum)

In diesem Menü werden Zeit und Datum eingestellt.



Abbildung 3.60: Bildschirm zur Einstellung von Datum und Zeit

Tabelle 3.89: Tastenfunktionen

	Folgende Parameter können ausgewählt werden: Stunde, Minute, Sekunde, Tag, Monat und Jahr.
	Wert des ausgewählten Elements ändern.
ESC	Zurück zum Menübildschirm "GENERAL SETUP".

**Hinweis:** PowerQ4 / PowerQ4 Plus haben die Fähigkeit, die Zeituhr des Systems mit der Koordinierte Weltzeit (UTC) zu synchronisieren, wenn ein extern angeschlossenes GPS-Modul angeschlossen ist.

In diesem Fall, kann nur die Tageszeit angepasst werden (Zeitzone). Zur Nutzung dieser Funktion siehe 4.2.5.

### 3.17.3 Language (Sprache)

In diesem Menü können verschiedene Sprachen ausgewählt werden.

	LANGUAGE	<b>D</b> 09:05
English		
Deutsch		

Abbildung 3.61: Bildschirm Sprachen-Setup

Tabelle 3.90: Tastenfunktionen



### 3.17.4 Speicher löschen

Verwenden Sie dieses Menü, um die verschiedenen Speicher des Instruments zu löschen. Der Benutzer kann eines der folgenden Elemente zur Löschung auswählen:

	CLEAR MENU	<b>D</b> 00:07
Events		
Alarms		
Records		

Abbildung 3.62: Menübildschirm Löschen

Tabelle 3.91: Beschreibung der Optionen des Löschmenüs

Ereignisse:	Tabelle der Spannungsereignisse löschen.
Alarme:	Alarm-Tabelle löschen.
Datensätze:	Alle gespeicherten Datensätze löschen.

Tabelle 3.92: Tastenfunktionen



### 3.17.5 Instrument info (Instrumenteninformation)

Grundlegende Informationen zum Instrument können in diesem Menü eingesehen werden: Firma, Benutzerdaten, Seriennummer, Firmwareversion und Hardwareversion.

INSTRUMENT INFO	<b>b</b> 09:04
Company:	METREL
User data:	Operater
Serial No:	
FW ver.:	11.0
HW ver.:	3.0
Memory size (kB):	7853
Free memory (kB):	3341

Abbildung 3.63: Infobildschirm des Instrumentes

Tabelle 3.93: Tastenfunktionen



Zurück zum Menübildschirm "GENERAL SETUP".

## 3.17.6 Verriegeln / Entriegeln

Die Programme PowerQ4 / PowerQ4 Plus verfügen über die Fähigkeit, eine nicht autorisierte Verwendung aller Funktionen, durch einfache Verriegelung des Instruments zu verhindern. Die Verriegelung des Instruments kann aus mehreren Gründen notwendig sein, vor allem, wenn es sich eine längere Zeit unbeaufsichtigt an einer Messstelle befindet. Folgende Gründe kommen in Frage: Vermeidung eines ungewollten Abbruchs einer Aufzeichnung, Vermeidung unerwünschter Änderungen der Einstellungen des Instruments oder Messeinstellungen etc. Durch die Verriegelung des Instruments können zwar unerwünschte Änderungen der Funktionen vermieden werden, jedoch werden zerstörungsfreie Betriebsabläufe wie Anzeigen von Messwerten oder -Verläufen dennoch ausgeführt.

Die Verriegelung des Instrument erfolgt durch Eingabe des geheimen Verriegelungscodes im Bildschirm Verriegeln / Entriegeln.



Abbildung 3.64: Bildschirm Verriegeln / Entriegeln

#### Tabelle 3.94: Tastenfunktion



In der folgenden Tabelle wird dargestellt, wie sich das Verriegeln auf die Funktion des Instruments auswirkt.

MESSUNGEN	Wellenform-Momentanwerte blockiert
RECORDER	Kein Zugriff
MESSGERÄT EINRICHTEN	Kein Zugriff
ALLGEMEINE EINSTELLUNGEN	Kein Zugriff außer Menü Verriegeln / Entriegeln

Eine Warnmeldung wird angezeigt, wenn der Benutzer blockierte Funktionen nutzen will. Durch Drücken von Enter, während die Warnmeldung angezeigt wird, gelangt man in das Menü Verriegeln / Entriegeln, von wo aus es durch Eingabe des festgelegten Codes entriegelt werden kann.



Abbildung 3.65: Warnmeldung bei verriegeltem Instrument

Hinweis: Falls der Benutzer den Entriegelungscode vergessen hat, kann der allgemeine Code "120371" zur Entriegelung verwendet werden.

# 4 Praxis für Aufzeichnung und Anschluss des Instruments

Im folgenden Abschnitt werden empfohlene Messverfahren und Aufzeichnungsmethoden praktisch beschrieben.

# 4.1 Durchführen von Messungen

Messungen zur Analyse der Qualität des Stromnetzes stellen einen speziellen Typ Messung dar, wobei die Messungen mehrere Tage dauern können. In den meisten Fällen werden solche Messungen nur *einmal* durchgeführt. Üblicherweise wird eine Analyse durchgeführt, um:

- einige Punkte im Stromnetz statistisch zu analysieren.
- einen Fehler bei einem bestimmten Gerät oder einer bestimmten Maschine zu beheben.

Da die meisten Messungen nur einmalig *durchgeführt* werden, ist die korrekte Einstellung der Messgeräte von großer Bedeutung. Die Messung mit falschen Einstellungen kann zu falschen oder nutzlosen Messergebnissen führen. Aus diesem Grund ist es wichtig, dass sowohl der Benutzer als auch das Messgerät vor Beginn der Messung vollständig vorbereitet sind.

In diesem Abschnitt wird das empfohlene Vorgehen beim Aufzeichnen erklärt. Es wird dringend empfohlen, genau nach dieser Anleitung vorzugehen, um häufig vorkommende Probleme und Messfehler zu vermeiden. Die folgende Abbildung fasst das empfohlene Vorgehen in der Messpraxis kurz zusammen. Anschließend wird jeder Einzelschritt genau beschrieben.

**Hinweis:** Die PC-Software PowerView v2.0 kann folgende Parameter nach ausgeführter Messung korrigieren:

- falsche Echtzeiteinstellungen,
- falscher Strom- bzw. Spannungsskalierfaktor.

Fehler durch ein fehlerhaft angeschlossenes Instrument (vertauschte Kabel, entgegengesetzte Klemmenrichtung) hingegen können nicht mehr korrigiert werden.



Abbildung 4.1: Praxisempfehlungen für Messungen

#### Schritt 1: Einrichtung des Instruments

Messungen vor Ort können sehr anstrengend sein, weshalb es sehr sinnvoll ist, die Messausrüstung bereits im Büro vorzubereiten. Vorbereitung von PowerQ4 / PowerQ4 Plus einschließlich folgender Schritte:

- Sichtprüfung des Instruments und des Zubehörs.
   Warnung: Verwenden Sie keinesfalls sichtbar beschädigte Geräte!
- Stets Batterien verwenden, die in einwandfreiem Zustand sind und vor dem Verlassen des Büros vollständig aufgeladen wurden.
   Hinweis: Halten Sie Batterien in gutem Zustand. Bei problematischer PQ-Umgebung, wo Spannungsabfälle und Unterbrechungen häufig vorkommen, ist die Stromversorgung des Instruments vollständig auf die Batterien angewiesen!
- Laden Sie alle vorherigen Aufzeichnungen vom Instrument herunter und Löschen Sie den Speicher. (Anweisungen zum Löschen des Speichers, s. 3.10)
- Stellen Sie Zeit und Datum des Instruments korrekt ein. (Anweisungen zur Einstellung von Zeit und Datum, s. 0)

#### Schritt 2: Einrichtung der Messfunktionen

Die Anpassung der Messgerätkonfiguration wird vor Ort *durchgeführt*, nachdem Sie Einzelheiten bzgl. Nennspannung, Strömen, Leitungstypen etc. in Erfahrung gebracht haben.

#### Schritt 2.1: Synchronisierung und Verdrahtung

- Die Stromzangen und Spannungsmessspitzen entsprechend "Gerät zur Messung" anschließen (Details, s. Abschnitt 4.2).
- Den korrekten Anschlusstyp im Menü "Connection Setup" (Verbindung einrichten) einstellen (Details, s. 3.16.1).
- Den Synchronisierungskanal auswählen. Die Synchronisierung anhand der Spannung wird empfohlen, es sei denn, die Messung wird an hochgradig verzerrten Lasten, etwa an PWM-Antrieben, vorgenommen. In diesem Fall kann Stromsynchronisierung das geeignetere Verfahren sein. (Details, s. 3.16.1).
- Systemfrequenz auswählen. Die Systemfrequenz ist standardmäßig auf Netzfrequenz eingestellt. Diesen Parameter einstellen, wenn Signalwerte oder Flicker gemessen werden sollen.

#### Schritt 2.2: Spannungsbereich und -verhältnis

• Den geeigneten Spannungsbereich anhand der Nennspannung des Stromnetzes auswählen.

**Hinweis:** Für 4-W- und 1-W-Messungen werden alle Spannungen als Phase-zu-Neutralleiter (L-N) angegeben. Für 3-L-Messungen werden alle Spannungen als Phase zu Phase (L-L) angegeben

**Hinweis:** Das Instrument gewährleistet die Genauigkeit von korrekten Messungen für Spannungen in Höhe von bis zu 150 % der gewählten Nennspannung.

 Wenn indirekte Spannungsmessungen durchgeführt werden sollen, Spannungsbereich 50 V ÷ 110 V auswählen und das Spannungsverhältnis gemäß Spannungswandler-Verhältnis auswählen. (Details, s. 3.16.1).

#### Schritt 2.3: Einrichten von Stromzangen

- Im Menü "Current Clamps" (Stromzangen) die korrekten Zangen auswählen (Details, s. Abschnitt 3.16.1).
- Die geeigneten Zangenparameter entsprechend dem Anschlusstyp auswählen (Details, s. 4.2.3).

#### Schritt 2.4: Ereigniseinrichtung (optional)

Diesen Schritt nur durchführen, wenn Spannungsereignisse Gegenstand der Betrachtung sind. Wählen Sie die Nennspannung und die Schwellenwerte für: Spannungsabfälle, -anstiege und -unterbrechungen (siehe Abschnitte 3.16.2 und 3.13). **Hinweis:** Ereignisse in "EVENT SETUP" (Ereignisse einrichten) nur aktivieren, wenn Sie Ereignisse erfassen möchten, ohne dazu den RECORDER zu benutzen.

#### Schritt 2.5: Alarmeinrichtung (optional)

Diesen Schritt nur durchführen, wenn Sie prüfen möchten, ob Größen vordefinierte Grenzwerte (Details, s. 3.14 und 3.16.3) durchlaufen.

**Hinweis:** Alarmprotokollierung nur aktivieren, wenn Sie Alarme ohne Mithilfe des RECORDERS erfassen wollen.

#### Schritt 2.6: Signaleinrichtung (optional)

Verwenden Sie diesen Schritt ausschließlich, wenn Sie Netzsignalspannungen messen möchten.

#### Schritt 3: Prüfung

Nachdem Messgerät- und Messungskonfiguration abgeschlossen sind, muss der Benutzer erneut prüfen, ob alles korrekt angeschlossen und konfiguriert ist. Dazu werden folgende Schritte empfohlen.

- Prüfen Sie mithilfe des Menüs "PHASE DIAGRAM" (Phasendiagramm), ob die Spannungs- und Strom-Phasensequenz entsprechend dem System korrekt eingestellt ist. Entsprechend prüfen, ob der Strom die korrekte Drehrichtung aufweist.
- Im Menü U, I, f prüfen, ob die Spannungs- und Stromwerte korrekt sind.
- Darüber hinaus den Spannungs- und Strom-Gesamtklirrfaktor pr
  üfen.
   Hinweis: Ein 
  überm
  äßig hoher Gesamtklirrfaktor kann bedeuten, dass ein zu kleiner Bereich gew
  ählt wurde!

**Hinweis:** Bei einem AD-gewandelten Strom- und Spannungswert werden die Werte farblich invertiert dargestellt 250,4 V.

**Hinweis:** Falls der Phasenstrom- und der Spannungswert nicht innerhalb einer Spanne von  $10\% \div 150\%$  liegen, werden die Werte invertiert farblich dargestellt 0,4 V.

• Mithilfe des Menüs POWER (LEISTUNG) die Vorzeichen und Indizes von Wirkleistung, Blindleistung und Leistungsfaktor prüfen.

Wenn einer der vorgenannten Schritte verdächtige Messergebnisse liefern, zu Schritt 2 zurück gehen und die Messparameter erneut prüfen.

#### Schritt 4: Online-Messung

Das Instrument ist nun messbereit. Die Leiterparameter für Spannung, Strom, Netzoberwellen, entsprechend dem Messprotokoll und den Kundenproblemen messen.

**Hinweis:** Wichtige Messungen mithilfe der Momentanwerterfassung von Wellenform festhalten. Momentanwerte der Wellenform erfassen alle Netzqualitätssignaturen auf einmal (Spannung, Strom, Leistung, Oberwellen, Flickern).

#### Schritt 5: Einrichtung des Recorders und Aufzeichnung

Menü RECORDERS verwenden, Aufzeichnungsart auswählen und folgende Aufzeichnungsparameter einstellen:

- Signale, die der Recorder aufzeichnen soll
- Zeitintervall für die Datenaggregation (IP)
- Aufzeichnungsdauer
- Startzeit der Aufzeichnung (optional)
- Zeichnen Sie gegebenenfalls die Erfassung von Ereignissen und Alarmen auf

Nach der Recordereinrichtung kann mit der Aufzeichnung begonnen werden. (Recorder-Details, s. 3.9).

**Hinweis:** Eine Aufzeichnung dauert üblicherweise einige Tage. Stellen Sie sicher, dass das Instrument nicht in die Hände von nicht befugten Personen gelangen kann. Wenn nötig, Verriegelungsfunktion nutzen (siehe 3.17.6).

#### Schritt 6: Interpretieren der Messungen

Bevor Sie den Messort verlassen, müssen Sie

- die aufgezeichneten Daten vorläufigen mithilfe der Trend-Bildschirme beurteilen.
- den Recorder stoppen.
- sicherstellen, dass alles benötigte aufgezeichnet wird.

#### Schritt 7: Berichterstellung (PowerView v2.0)

Datensätze mithilfe der PC-Software PowerView v2.0 herunterladen und Analyse durchführen. Siehe Details im Handbuch PowerView v2.0.

# 4.2 Anschlusseinrichtung

#### 4.2.1 Anschluss an die Niederspannungsnetze

Das Instrument kann an 3-Phasen- und Einphasen-Netze angeschlossen werden.

Das tatsächliche Anschlussschema muss im Menü CONNECTION SETUP (ANSCHLUSSEINRICHTUNG, s. folgende Abbildung) festgelegt werden.

	-,
	CONNECTION SETUP 🕨 15:38
	Nominal range: 240 - 1000 V L-N
	Voltage ratio: 1:3
	Ph. Curr. Clamps 4: A1122 (20 A)
	N. Curr. Clamps
	Connection •:4W
	Synchronization:U1
I	System frequency:50Hz
	Default Parameters
I	

Abbildung 4.2: Setup-Bildschirm "CONNECTION"

Beim Anschließen des Instruments ist es wichtig, dass sowohl die Strom- als auch die Spannungsanschlüsse korrekt sind. Es müssen insbesondere folgende Regeln beachtet werden:

Stromzangen-Stromwandler

- Die auf der Stromzange angebrachte Markierung muss in Richtung des Stromflusses zeigen, von der Versorgung zur Last.
- Wird der Stromzangen-Stromwandler in umgekehrter Richtung angeschlossen, erscheint die in dieser Phase gemessene Leistung normalerweise negativ.

Phasenbeziehungen

 Mit dem am Stromeingang I₁ angeschlossenen Stromzangen-Stromwandler muss der Strom des Phasenleiters gemessen werden, an dem die Spannungsprüfspitze von L₁ angeschlossen ist.

#### 3-Phasen-4-Leitersystem

Für dieses Anschlussschema die folgende Verbindung am Instrument auswählen:



Abbildung 4.3: Auswahl des 3-Phasen-4-Drahtsystems am Instrument

Das Instrument muss entsprechend der folgenden Abbildung am Stromnetz angeschlossen werden:



Abbildung 4.4: 3-Phasen-4-Drahtsystem

#### 3-Phasen-3-Leitersystem

Für dieses Anschlussschema die folgende Verbindung am Instrument auswählen:



Abbildung 4.5: Auswahl des 3-Phasen-3-Drahtsystems am Instrument

Das Instrument muss entsprechend der folgenden Abbildung am Stromnetz angeschlossen werden.



Abbildung 4.6: 3-Phasen-3-Drahtsystem

#### 1-Phasen 3-Leitersystem

Für dieses Anschlussschema die folgende Verbindung am Instrument auswählen:

SETUP:Measuring:Connection 20:49
Α
Ę
N GND
÷
1W ³⁰⁰

Abbildung 4.7: Auswahl des 1-Phasen-3-Drahtsystems am Instrument

Das Instrument muss entsprechend der folgenden Abbildung am Stromnetz angeschlossen werden.



Abbildung 4.8: 1-Phasen-3-Drahtsystem

**Hinweis:** Bei der Aufzeichnung von Ereignissen wird empfohlen, nicht verwendete Spannungseingänge mit dem Spannungseingang N zu verbinden.

### 4.2.2 Anschluss an Mittel- und Hochspannungsnetze

Bei Systemen, in denen die Spannung auf der Sekundärseite eines Spannungswandlers (zum Beispiel 11 kV / 110 V) gemessen wird, muss der Spannungsbereich auf 50÷110 V und der Skalierfaktor dieses Spannungswandlers als Verhältnis im Instrument eingegeben werden, damit die Messung korrekt ist. In der nächsten Abbildung werden die Einstellungen für dieses spezifische Beispiel gezeigt.



Abbildung 4.9: Spannungsverhältnis für 11kV / 110kV (Transformatorbeispiel)

Das Instrument muss entsprechend der folgenden Abbildung am Stromnetz angeschlossen werden.



Abbildung 4.10: Anschließen des Instruments an bestehende Stromwandler in Mittelspannungssystem

#### 4.2.3 Stromzange auswählen und Transformationsverhältnis einstellen

Die Zangenauswahl kann anhand zweier Beispiele verdeutlicht werden: **Direkte Strommessung** und **indirekte Strommessung**. Im nächsten Abschnitt wird das empfohlene Vorgehen für beide Fälle gezeigt.

#### Direkte Strommessung mit Stromzangen-Stromwandler

Bei dieser Messung wird der Last- / Generatorstrom direkt mit einem Stromzangen-Stromwandler gemessen. Die Wandlung von Strom zu Spannung wird **direkt** von den Klemmzangen *vorgenommen*. Die direkte Strommessung mit jedem Stromzangen-Stromwandler *durchgeführt* werden. Wir empfehlen ausdrücklich intelligente Stromzangen: Flex Clamps A 1227 und Iron Clamps A 1281. Ebenso können ältere Metrel-Zangenmodelle wie A 1033 (1000A), A1069 (100A), A1120 (3000A), A1099 (3000A) verwendet werden.

Bei Systemen mit großen Lasten kann es sein, dass einige wenige der parallele Zuleitungen nicht mit einer Stromzange umgriffen werden können. In diesem Fall ist die Strommessung an nur einer Zuleitung, wie in der folgenden Abbildung gezeigt durchzuführen.



Abbildung 4.11: Parallelzuleitung bei großer Last

**Beispiel:** Es wird eine Stromlast von 2700 A über drei 3 gleiche parallele Einspeisekabel zugeführt. Um einen Strom zu messen berühren wir mit der Stromzange nur ein Kabel. Wir wählen im Stromzangen-Menü: Messungen an Drähten: 3. So geht das Instrument davon aus, dass lediglich ein Drittel des Stromes gemessen wird.

**Hinweis:** Während der Einrichtung kann für den Strombereich "Current range: 100% (3000 A)" beobachtet werden.

#### Indirekte Strommessung

Die indirekte Strommessung mit Primärstromwandlern wird verwendet, wenn der Benutzer 5A-Stromzangen auswählt: A 1122 oder A 1037. Der Laststrom wird in dem Fall **indirekt** durch zusätzliche Primärstromwandler gemessen.

Ein **Beispiel**: Angenommen, es fließen 100 A an Primärstrom durch einen primären Stromwandler, der ein Stromverhältnis von 600 A : 5 A besitzt, dann ergibt sich die in der folgenden Abbildung gezeigte Einstellung.



Abbildung 4.12: Stromzangenauswahl für indirekte Strommessung

#### Überdimensionierte Stromwandler

Stromwandler in den Anlagen vor Ort sind üblicherweise, wegen der Möglichkeit, dass "neue Lasten in der Zukunft hinzukommen könnten" überdimensioniert. Es ist dann möglich, dass im primären Stromwandler weniger als 10 % des Nennstromes des Transformators fließen. In diesen Fällen wird, wie in der Abbildung gezeigt, empfohlen, 10 % Strommessbereich auszuwählen.

SETUP:Measuring:Range 22:			22:36	
1	12	13	In	
0.060A	0.060A	0.060A	0.10 A	
Clamp	Clamps selected:A1122			
Clamps range:5 A				
Current range: 10% (60.0 A)				
Status:N/A				
Primary transformer				
Primary current:600 A				
Second	ary current	:5 A		

Abbildung 4.13: Auswahl von 10% des Stromzangenbereichs

Hinweis: Beachten Sie, dass bei einer direkten Strommessung mit 5 A Stromzangen das primäre Übersetzungsverhältnis auf 5 A : 5 A gesetzt werden muss.

# MARNUNG!

- Die Sekundärwicklung des Stromwandlers muss bei Strom führenden Teilen offen bleiben.
- Ein offener Sekundärstromkreis kann zu lebensgefährlich hohen Spannungen an den Klemmen führen.

#### Automatische Stromzangenerkennung

Metrel hat die Smart-Stromzangen-Produkte erfunden, um die Auswahl und die Einstellungen von Stromzangen zu verbessern. Smart Clamps sind schalterlose Mehrbereichsstromzangen, die vom Instrument automatisch erkannt werden. Zur Aktivierung der Erkennung von Smart Clamps muss einmalig wie folgt vorgegangen werden:

- 1. Das Instrument einschalten
- 2. Stromzangen an PowerQ4 / PowerQ4 Plus anschließen (z.B. A 1227)
- 3. Eingabe: Messungseinrichtung → Anschlusseinrichtung → Ph./N. Strom Menü Stromzangen
- 4. Auswahl: Intelligente Stromzangen
- 5. Nun wird der Stromzangentyp automatisch vom Instrument erkannt.
- 6. Der Benutzer muss nun den Messbereich der Stromzange auswählen und die Einstellungen bestätigen



Abbildung 4.14: Einrichten der automatisch erkannten Stromzangen

Das Instrument erkennt die Stromzangeneinstellung auch bei der nächsten Benutzung. Dazu muss der Benutzer lediglich:

- 1. Die Stromzange an das Instrument anschließen
- 2. Das Instrument einschalten

Das Instrument erkennt die Stromzangen beim nächsten Mal automatisch und stellt den Messbereich auf die zuletzt verwendeten Einstellungen ein. Wenn die Stromzange abgeklemmt wurde, erscheint die folgende Dialogmeldung.



Abbildung 4.15: Status der automatisch erkannten Stromzangen

Das Menü Status der Stromzangen gibt an, dass eine Diskrepanz zwischen eingerichteter Stromzange und angeschlossener Stromzange besteht. In der Abbildung oben, z.B., wird gezeigt, dass keine Stromzange definiert wurde (X), jedoch aktuell Zangen am Stromkanal I1 vorhanden sind.

Setup (Einrichtung)	Stromzangen anzeigen, die während der Einrichtung in Messungen→Anschluss→Ph./N. Stromzangen eingerichtet wurden.	
	• X: Zangen an diesem Stromkanal fehlen	
	• I1/I2/I3/In: Zangen lagen an und wurden eingerichtet	
	Ts: Temperaturfühler lag an und wurde eingerichtet	
	Stromzangen anzeigen, die aktuell an das Instrument angeschlossen sind:	
Online	• X: Zangen an diesem Stromkanal fehlen	
	<ul> <li>I1/I2/I3/In: Stromzangen liegen im Moment an</li> <li>Ts: Temperaturfühler liegt im Moment an</li> </ul>	

Tabelle 4.1: Symbole und	Abkürzungen des	Stromzangenstatus-Bildschirn	าร
····	<b>J</b>	<b>J</b>	-

**Hinweis:** Intelligente Stromzangen nicht während des Aufzeichnens oder einer Messung abklemmen. Der Stromzangenmessbereich wird zurückgesetzt, wenn die Stromzange vom Instrument abgeklemmt wird.

### 4.2.4 Anschluss eines Temperaturfühlers

Die Temperaturmessung wird anhand eines intelligenten Temperaturfühlers, der an den Neutralleiter-Eingangskanal IN angeschlossen wird, durchgeführt. Zur Aktivierung der Erkennung von Smart Clamps muss einmalig wie folgt vorgegangen werden:

- 1. Das Instrument einschalten
- 2. Anschließen des Temperaturfühlers an PowerQ4 / PowerQ4 Plus Neutral-Eingangskanal
- 3. Eingabe: Messungseinrichtung  $\rightarrow$  Anschlusseinrichtung  $\rightarrow$  N. Stromzangen.
- 4. Auswahl: Intelligente Stromzangen
- 5. Nun wird der Temperaturfühler automatisch vom Instrument erkannt.
- 6. Der Benutzer bestätigt anschließend die Einstellungen



Abbildung 4.16: Einstellungen für automatische Erkennung der Temperaturfühler

Das Instrument erkennt die Einstellung auch bei der nächsten Benutzung. Dazu muss der Benutzer lediglich:

- 1. Den Temperaturfühler an das Instrument anschließen
- 2. Das Instrument einschalten

Das Instrument erkennt den Temperaturfühler automatisch. Das folgende Popup-Fenster erscheint auf dem Bildschirm, wenn der Temperaturfühler angeschlossen oder entfernt wurde.



Abbildung 4.17: Popup-Fenster bei erkanntem Temperaturfühler

### 4.2.5 GPS-Zeitsynchronisierung bei Geräteanschluss¹²

PowerQ4 Plus hat die Fähigkeit, die Zeituhr des Systems mit der Koordinierte Weltzeit (UTC) zu synchronisieren, wenn ein extern angeschlossenes GPS-Modul angeschlossen wird (optionales Zubehörteil A 1355). Um diese besondere Funktion zu nutzen, muss der USB-Eingang als primärer Kommunikationsport ausgewählt werden. Wenn dies geschehen ist, kann das GPS-Modul an den PS/2-Kommunikationsport angeschlossen werden. PowerQ4 Plus unterscheidet zwei verschiedene Zustände für GPS-Modulfunktionen.

Tabelle 4.2: GPS-Funktionen

	GPS-Modul erfasst, Position ungültig oder kein GPS-Satellitensignal-Empfang.
9	GPS-Modul erfasst, GPS-Satellitensignal-Empfang vorhanden, Datum und Zeit gültig und synchronisiert, Synchronisierungs-Impulse aktiv

Sobald eine feste Ausgangsposition eingenommen wurde, verlangt das Instrument vom Benutzer die korrekte Zeitzone einzustellen (*siehe Abbildung unten*).

SET TIME & DATE	00:07
00:07:31 01.01.00	

Abbildung 4.18: Bildschirm zur Einstellung der Zeitzone





¹² nur PowerQ4 Plus

Wenn die Zeitzone eingestellt ist, synchronisiert PowerQ4 Plus seine Systemuhr und die interne RTC-Uhr mit der empfangenen UTC-Zeit. Das GPS-Modul gibt dem Instrument darüber hinaus jede Sekunde äußerst akkurate Synchronisierungsimpulse (PPS – Pulse Per Second) zur Synchronisierung, falls der Satellitenempfang ausfällt.

Hinweis: Die GPS-Synchronisierung ist vor den Messungen vorzunehmen.

Detaillierte Informationen finden Sie im Benutzerhandbuch des GPS-Receivers A 1355.

### 4.2.6 Anschluss des GPRS-Modems¹³

PowerQ4 Plus kann mithilfe eines GPRS-Modems (optionales Zubehörteil - A 1356) per Remote-Steuerung bedient werden. Um mithilfe von PowerView v2.0 eine Remote-Verbindung zum Instrument aufzubauen, sind die Kommunikationsparameter zu definieren. Die unten stehende Abbildung zeigt das Menü KOMMUNIKATION in den ALLGEMEINEN EINSTELLUNGEN (GENERAL SETUP).

CC	MMUNICATION 🛛 🕨 17:1	1
Source:	RS232	
Baud rate:	115200	
GPRS:	Disabled	
Number: PIN:	0038631344098	
Secret key:	123	
Username:	mobitel	
Password:	internet	
APN:	internet	

Abbildung 4.19: Setup-Bildschirm GPRS-Anschluss

Die folgenden Parameter müssen zur Erstellung einer GPRS-Kommunikation eingegeben werden:

Tabelle 4.4: Parameter für GPRS-Einrichtung

	-					
	Erforder-	Eingabe der Telefonnummer				
Nummer:	lich	-				
		Diesen Parameter eingeben, wenn die SIM-Karte dies				
PIN:	Optional	verlangt Wenn Sie den PIN auf Ihrer SIM Karte nicht				
		venanyi. Wenn Sie den Fin auf inter Siwi-Karte nicht				
		deaktiviert haben, tun Sie dies mithilfe Ihres Mobiltelefons.				
		Zahlencode eingeben (z.B. dreistellig). Der Benutzer muss				
Geheimcode	Erroraer-	diese Zahl snäter wiederverwenden und in PowerView				
Genenncoue	lich					
		v2.0 zur Verbindungsherstellung eingeben				
APN	Erforder-	Diese Parameter werden vom Mobilfunkunternehmen, bei				
	lich	dem die SIM-Karte für das GPRS-Modem bezogen wurde				
Benutzername	Erforder-	ausgegeben. Sie sind notwendig, um mit dem GPRS-				
	lich	Modem eine Internetverbindung herzustellen.				
Passwort	Erforder-					
	lich					

¹³ nur PowerQ4 Plus

Nach Eingabe der Parameter muss der Anwender die Software PowerQ4 Plus mithilfe des Kabels an das Modem anschließen und die Initialisierung aktivieren (INIT), indem

die Funktionsteste Gedrückt wird. Ein neues Fenster erscheint auf der Anzeige. Der GPRS-Test startet.



Abbildung 4.20: GPRS-Testbildschirm

Der Modemstatus kann über das Hauptmenü überwacht werden, siehe Abbildung unten.



Abbildung 4.21: "HAUPTMENÜ"



GPS-Modulstatus (Optionales Zubehörteil A 1355)Image: GPS-Modul erfasst, gibt jedoch ungültige Zeit- und Positionsdaten aus<br/>(Suche nach Satelliten oder Satellitensignal zu schwach)<br/>GPS-Zeit gültig – gültiges Satelliten-GPS-Zeitsignal)Image: GPS-Modemstatus (Optionales Zubehörteil A 1356)Image: GPRS in Initialisierungsmodus (Details siehe Abschnitt 4.2.6)Image: GPRS-Modem bereit, Anwenderruf entgegenzunehmen (Details siehe<br/>Abschnitt 4.2.6)Image: GPRS-Kommunikation läuft (Details siehe Abschnitt 4.2.6)

Detaillierte Informationen finden Sie im Benutzerhandbuch des GPRS-Modems A 1356.

## 4.3 Anzahl der gemessenen Parameter und Abhängigkeit zur Verbindungsart

Die Parameter, die von PowerQ4 / PowerQ4 Plus angezeigt und gemessen werden, hängen hauptsächlich vom Netzwerktyp, wie in Menü CONNECTION SETUP definiert,

ab Verbindungsart. Beispielsweise erscheint lediglich die Messung für ein Einphasensystem, wenn der Benutzer als Anschlusssystem Einphasensystem gewählt hat. Die folgende Tabelle zeigt die Abhängigkeiten zwischen Messungsparametern und Netzwerktyp.

				Anschlusstyp
Wert		1-L	3-L	4-L
U	RMS	$U_{lrms}$	$U_{12Rms}$ $U_{23Rms}$	U _{1rms} U _{2rms} U _{3rms} U _{Nrms}
,I,f		U _{Nrms}	U _{31Rms}	$U_{12Rms} U_{23Rms} U_{31Rms}$
	THD	$THD_{U1}$	$THD_{U12}$ $THD_{U23}$	$THD_{U1} THD_{U2} THD_{U3} THD_{UN} THD_{U12} THD_{U23}$
		THD _{UN}	THD _{U31}	THD _{U31}
	Cf	$CfU_1$	$CfU_{12}$ $CfU_{23}$	$CfU_1 CfU_2 CfU_3 CfU_N$
	DIG	$CfU_N$	$CfU_{31}$	$CfU_{12}CfU_{23}CfU_{31}$
	RMS	$I_{1rms}I_{Nrms}$	$I_{1rms}I_{2rms}I_{3rms}$	$I_{1rms}I_{2rms}I_{3rms}I_{Nrms}$
	THD	$THD_{I1}$	$THD_{I1}$ $THD_{I2}$	$THD_{11} THD_{12} THD_{13} THD_{1N}$
		THD _{IN}	THD ₁₃	
	Cf	$CfI_1 CfI_N$	$CfI_1 CfI_2 CfI_3$	$CfI_1 CfI_2 CfI_3 CfI_N$
	freq	$freqU_1$	$freqU_{12}$	$freqU_1$
		freqI ₁	freqI ₁	freqI ₁
EL	P	$\pm P_1$	$\pm P_{tot}$	$\pm P_1 \pm P_2 \pm P_3 \pm P_{tot}$
eistung nergie	Q	$\pm Q_1$	$\pm Q_{tot}$	$\pm Q_1 \pm Q_2 \pm Q_3 \pm Q_{tot}$
	S	$S_1$	Stot	$S_1 S_2 S_3 S_{tot}$
&	PF	$\pm PF_1$	±PF _{tot}	$\pm PF_1 \pm PF_2 \pm PF_3 \pm PF_{tot}$
	DPF	$\pm DPF_1$		$\pm DPF_1 \pm DPF_2 \pm DPF_3 \pm DPF_{tot}$
E	Pst	Pst _{1min1}	Pst _{1min12} Pst _{1min23}	Pst _{1min1} Pst _{1min 2} Pst _{1min 3}
lick	(1min)		Pst _{1min31}	
ker	Pst	Pst ₁	$Pst_{12}Pst_{23}Pst_{31}$	$Pst_1 Pst_2 Pst_3$
	Plt	$Plt_1$	$Plt_{12}Plt_{23}Plt_{31}$	$Plt_1 Plt_2 Plt_3$
m	%	-	u ī	$u^{0}i^{0}u^{}i^{}$
syn	RMS		$U^+ U$	$U^+ U^- U^0$
ē T			$I^+ I^-$	$I^+ I^- I^0$
H	Uh _{1÷50}	$U_1 h_{1 \div 50}$	$U_{12}h_{1\div 50} U_{23}h_{1\div 50}$	$U_1 h_{1 \div 50} U_2 h_{1 \div 50} U_3 h_{1 \div 50} U_N h_{1 \div 50}$
arn Iter		$U_N h_{1 \div 50}$	$U_{31}h_{1\div 50}$	
noi ha	Ih _{1÷50}	$I_1 h_{1 \div 50}$	$I_1 h_{1 \div 50} \qquad I_2 h_{1 \div 50}$	$I_1 h_{1 \div 50} I_2 h_{1 \div 50} I_3 h_{1 \div 50} I_N h_{1 \div 50}$
niso rm		$I_N h_{1 \div 50}$	$I_3h_{1\div 50}$	
che oni	Uih ₁₋₅₀	$U_1ih_{1+50}$	$U_{12}ih_{1\div 50}$	$U_1 i h_{1 \div 50} U_2 i h_{1 \div 50} U_3 i h_{1 \div 50} U_N i h_{1 \div 50}$
un isch		$U_N i h_{1 \div 50}$	$U_{23}ih_{1\div 50}$	
le	lib	I :la	$U_{31}ln_{1\div 50}$	
	IIN ₁₋₅₀	$I_1 l n_{1 \div 50}$	$\begin{array}{ccc} I_1 l n_{1 \div 50} & I_2 l n_{1 \div 50} \\ I_2 l n_{1 \div 50} & I_3 l n_{1 \div 50} \end{array}$	$1_{1}ln_{1\div50}1_{2}ln_{1\div50}1_{3}ln_{1\div50}1_{N}ln_{1\div50}$
		1NII1+50	131111÷50	

Tabelle	4.6:	Gemessene	Anzahl	nach	Instrument
rasono	1.0.	0011100000110	7 11 Z G I II	naon	moundin

**Hinweis:** Die Frequenzmessung ist vom Synchronisierungs-(Referenz-)Kanal abhängig, der vom Typ Spannung oder Strom sein kann.

Auch bei der Aufzeichnung besteht die gleiche Art von Abhängigkeit zum Anschlusstyp. Wählt der Benutzer Signals (Signale) im Menü RECORDER, so werden die Kanäle für die Aufzeichnung entsprechend dem Anschlusstyp, wie in der folgenden Tabelle aufgelistet, ausgewählt.

MI 2792 PowerQ4 Plus

Praxis für Aufzeichnung und Anschluss des Instruments

Tabell	le 4.7: Rec	crderanzahl	nach Instrument		
		Wert	1-Phasensystem	3-L	4-L
Sp	oannung	RMS	$U_{IRms} U_{NRms}$	U _{12Rms} U _{23Rms} U _{31Rms}	UIRms U2Rms U3Rms UNRms U12Rms U23Rms U31Rms
		THD	THD _{U1} THD _{UN}	$THD_{U12} THD_{U23} THD_{U31}$	$THD_{U1} THD_{U2} THD_{U3} THD_{UN} THD_{U12} THD_{U23} THD_{U31}$
		CF	$CfU_1 CfU_N$	$CfU_{12} CfU_{23} CfU_{31}$	$CfU_1 CfU_2 CfU_3 CfU_N CfU_{12} CfU_{23} CfU_{31}$
Z U,I,	rom	RMS	I Irms I Nrms	I _{1rms} I _{2rms} I _{3rms}	I Irms I 2rms I 3rms I Nrms
f		THD	THD _{II} THD _{IN}	THD ₁₁ THD ₁₂ THD ₁₃	THD ₁₁ THD ₁₂ THD ₁₃ THD _{1N}
		CF	$CfI_{I} CfI_{N}$	$CfI_1 CfI_2 CfI_3$	$CfI_1 CfI_2 CfI_3 CfI_N$
Fr	requenz	f	$freqU_{I}   freqI_{I}$	<i>freq</i> $U_{12}$ <i>freq</i> $I_1$	$freqU_{I}   freqI_{I}$
Le	eistung	P	$P_1^+ P_1^-$	$P_{tot}^+ P_{tot}^-$	$P_1^+  P_1^-  P_2^+  P_2^-  P_3^+  P_{lot}^+  P_{lot}^-$
		δ	$\mathcal{Q}_{\mathrm{l}}^{i+}  \mathcal{Q}_{\mathrm{l}}^{c+}  \mathcal{Q}_{\mathrm{l}}^{i-}  \mathcal{Q}_{\mathrm{l}}^{c-}$	$\mathcal{Q}^{i+}_{tot}  \mathcal{Q}^{c+}_{tot}  \mathcal{Q}^{i-}_{tot}  \mathcal{Q}^{c-}_{tot}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
]		S	$egin{array}{ccc} S_1^+ & S_1^- & \\ \end{array}$	$S^+_{tot}$ $S^{tot}$	$S_1^+  S_1^-  S_2^+  S_2^-  S_3^+  S_{lot}^-  S_{lot}^-$
년 Leis	nergie	eP	$eP_1^+ eP_1^-$	$eP_{tot}^+  eP_{tot}^-$	$eP_1^+ \; eP_1^- \; eP_2^+ \; eP_2^- \; eP_3^+ \; eP_{ot}^- \; eP_{ot}^+ \; eP_{ot}^-$
tung		eQ	$e \mathcal{Q}_1^{i+} e \mathcal{Q}_1^{c+}$	$e \mathcal{Q}_{tot}^{i+} e \mathcal{Q}_{tot}^{c+}$	$eQ_1^{i+} eQ_1^{c+} eQ_2^{i+} eQ_2^{c+} eQ_3^{i+} eQ_3^{c+} eQ_{iot}^{c+} eQ_{iot}^{i+} eQ_{iot}^{c+}$
g &			$eQ_1^{i^-}eQ_1^{c^-}$	$eQ_{tot}^{i-} eQ_{tot}^{c-}$	$eQ_1^{i-} eQ_2^{c-} eQ_2^{i-} eQ_2^{c-} eQ_3^{c-} eQ_3^{c-} eQ_{lot}^{c-} eQ_{lot}^{i-}$
Ene		eS	$eS_1^+ eS_1^-$	$eS_{tot}^+ eS_{tot}^-$	$eS_1^+ \ eS_1^- \ eS_2^+ \ eS_2^+ \ eS_3^- \ eS_3^+ \ eS_{iot}^- \ eS_{iot}^-$
rgie	eistungs-	Pf	$PF_1^{i+}PF_1^{c+}$	$PF_{tot}^{i+} PF_{tot}^{c+} PF_{tot}^{i-} PF_{tot}^{c-}$	$PF_1^{i+} \ PF_1^{c+} \ PF_2^{i+} \ PF_2^{c+} \ PF_2^{i+} \ PF_3^{i+} \ PF_3^{c+} \ PF_{lot}^{c+} \ PF_{lot}^{i+} \ PF_{lot}^{c+}$
ta	ktor		$PF_1^{i-}PF_1^{c-}$		$PF_1^{i-} \ PF_1^{c-} \ PF_2^{i-} \ PF_2^{c-} \ PF_3^{i-} \ PF_3^{c-} \ PF_3^{c-} \ PF_{iot}^{c-} \ PF_{iot}^{c-}$
		DPF	$DPF_1^{i+} DPF_1^{c+}$	1	$DPF_{1}^{i+} DPF_{1}^{c+} DPF_{2}^{i+} DPF_{2}^{c+} DPF_{3}^{c+} DPF_{3}^{i+} DPF_{3}^{c+}$
			$DPF_1^{i-} DPF_1^{c-}$		$DPF_1^{i-}$ $DPF_1^{c-}$ $DPF_2^{i-}$ $DPF_2^{c-}$ $DPF_3^{i-}$ $DPF_3^{c-}$
Flicke	er (	Pst (1min)	$P_{St_{IminI}}$	$Pst_{1min12}Pst_{1min23}Pst_{1min31}$	Pst1min1 Pst1min2 Pst1min3
		Pst (10min)	$Pst_I$	$Pst_{12} Pst_{23} Pst_{31}$	Pst ₁ Pst ₂ Pst ₃
		Plt (2h)	Plt ₁	Plt ₁₂ Plt ₂₃ Plt ₃₁	Plt1, Plt2, Plt3
Asym	metrie	0%	-	$u^{-}\dot{l}^{-}$	$u^0 i^0 u^{-} \bar{i}$
Oberv	wellen	$\mathbf{Uh}_{1\div50}$	$U_{I}h_{I+50} U_{N}h_{I+50}$	$U_{12}h_{1+50} U_{23}h_{1+50} U_{31}h_{1+50}$	$U_{1}h_{1+50} U_{2}h_{1+50} U_{3}h_{1+50} U_{N}h_{1+50}$
		$\mathbf{Ih}_{1+50}$	$I_I h_{I+50} I_N h_{I+50}$	$I_{1}h_{1+50}I_{2}h_{1+50}I_{3}h_{1+50}$	$I_1 h_{1+50} I_2 h_{1+50} I_3 h_{1+50} I_N h_{1+50}$
		${\rm Uih}_{1\div 50}$	$U_I i h_{I+50} U_N i h_{I+50}$	$U_{12}ih_{1+50} U_{23}ih_{1+50} U_{31}ih_{1+50}$	$U_I i h_{I+50} U_2 i h_{I+50} U_3 i h_{I+50} U_N i h_{I+50}$
		$Iih_{1+50}$	$I_I i h_{I \div 50} I_N i h_{I \div 50}$	$I_{I}ih_{I+50}I_{2}ih_{I+50}I_{3}ih_{I+50}$	$I_{I}ih_{I+50}I_{2}ih_{I+50}I_{3}ih_{I+50}I_{N}ih_{I+50}$

104

# **5** Theorie und interne Funktion

Dieser Abschnitt enthält die grundlegende Theorie der Messfunktionen und technische Informationen über die interne Funktion des PowerQ4/PowerQ4 Plus einschließlich der Beschreibung der Messverfahren und Aufzeichnungsprinzipien.

# 5.1 Messverfahren

## 5.1.1 Messungsaggregation über Zeitintervalle

Erfüllt IEC 61000-4-30 Klasse S (Abschnitt 4.4)

Als Basis-Messzeitintervall für:

- Spannung
- Strom
- Wirk-, Blind- und Scheinleistung
- Oberwellen
- Asymmetrie

gilt ein Intervall von 10 Perioden. Diese 10-Perioden-Messung wird in jedem Intervall gemäß IEC 61000-4-30 Klasse S neu synchronisiert. Die Messmethoden basieren auf der digitalen Abtastung der Eingangssignale, die zur Grundfrequenz synchronisiert werden. Jeder Eingang (4 Spannungen und 4 Ströme) wird 1024 mal in 10 Perioden abgetastet.

## 5.1.2 Spannungsmessung (Spannungsklasse)

Erfüllt IEC 61000-4-30 Klasse S (Abschnitt 5.2)

Alle Spannungsmessungen stellen Effektivwerte von 1024 Abtastwerten der Spannungsklasse über ein Zeitintervall von 10 Perioden dar. Jedes 10. Intervall ist zusammenhängend und überschneidet sich nicht mit den 10 Nachbarintervallen.



Abbildung 5.1: Phasen- und Phase-Phase-Spannung (Leitungsspannung)

Die Spannungswerte werden nach folgender Gleichung gemessen:

Phasenspannung:

$$U_{p} = \sqrt{\frac{1}{1024} \sum_{j=1}^{1024} u_{p_{j}}^{2}} \quad [V], \ p: 1, 2, 3, N$$
(1)

(6)

Leitungsspannung:

$$Upg = \sqrt{\frac{1}{1024} \sum_{j=1}^{1024} (u_{p_j} - u_{g_j})^2} \text{ [V], } pg: 12,23,31$$
 (2)

Crestfaktor Phasenspannung:

$$Cf_{U_p} = \frac{U_{p^{Pk}}}{U_p}, p: 1, 2, 3, N$$
 (3)

Crestfaktor Leitungsspannung:

$$Cf_{Upg} = \frac{U_{pgPk}}{U_{pg}}$$
, pg: 12, 23, 31 (4)

Das Instrument verfügt intern über 3 Spannungsmessbereiche. Mittelspannung (MV, Middle Voltage) und Hochspannungs- (HV, high Voltage) Systeme können mit dem niedrigsten Spannungsmessbereich mithilfe von Stromwandlern gemessen werden. Der Spannungsfaktor sollte hier eingegeben werden Spannungsverhältnis: 1:1 variabel im Menü CONNECTION SETUP.

### 5.1.3 Strommessung (Stromklasse)

Erfüllt: Klasse S (Abschnitt A.6.3)

Alle Strommessungen stellen Effektivwerte von 1024 Abtastwerten der Stromklasse über ein Zeitintervall von 10 Perioden dar. Je 10 Perioden sind angrenzende, nicht überlappende Intervalle.

Die Stromwerte werden nach folgender Gleichung gemessen:

Phasenstrom:

$$I_{p} = \sqrt{\frac{1}{1024} \sum_{j=1}^{1024} I_{p_{j}}^{2}} \quad [A], \ p: 1, 2, 3, N$$
(5)

Crestfaktor Phasenstrom:  $Ip_{cr} = \frac{Ip_{max}}{Ip}$ , *p*: 1,2,3,*N* 

Das Instrument verfügt über zwei interne Spannungsbereiche: 10% und 100% des nominellen Spannungswandlerstroms. Darüber hinaus bieten die intelligenten Stromzangenmodelle "Smart Clamps" weitere Messbereiche mit automatischer Messbereichserkennung.

### 5.1.4 Frequenzmessung

Erfüllt IEC 61000-4-30 Klasse S (Abschnitt 5.1)

Während der Aufzeichnung mit RECORDING und der Aggregationszeit Intervall: ≥10 s Frequenz-Ablesewert alle 10 s. Da die Leistungsfrequenz innerhalb des Zeituhr-Intervalls von 10 s nicht genau 50 Hz betragen darf, kann es sein, dass die Anzahl der Zyklen keine ganze Zahl ist. Der Grundfrequenzausgang ist der Quotient aus der Anzahl der während des 10-Sekunden-Zeitintervalls gezählten Ganzzahlenperioden durch die kumulative Dauer der Ganzzahlenperioden. Harmonische und Interharmonische werden zur Minimierung der Effekte mehrfacher Nulldurchgänge mittels eines 2-poligen Tiefpassfilters gedämpft.

Die Zeitmessintervalle sind nicht überlappend. Individuelle, die 10-Sekunden-Abtastzeit überlappende Perioden werden verworfen. Alle 10 s beginnen mit einem absoluten 10 s Zeittakt mit der in 6.2.17 angegebenen Unsicherheit.

Für eine Aufzeichnung mit Aggregationszeit gilt Intervall: <10 s und Online-Messungen, Frequenz-Ablesewerte werden aus 10 Zyklen gewonnen um die Reaktionszeit des Instruments zu minimieren. Die Frequenz ist der Quotient aus 10 Perioden durch die Dauer der Ganzzahlenperioden.

Die Frequenzmessung wird für den im Menü CONNECTION SETUP (Anschlusseinrichtung) eingestellten Synchronization channel (Synchronisierungskanal) *durchgeführt*.

### 5.1.5 Phasenleistungsmessungen

Erfüllt: IEEE STD 1459-2000 (Abschnitt 3.2.2.1; 3.2.2.2) IEC 61557-12 (Anhang A)

Alle Wirkleistungsmessungen stellen Effektivwerte von 1024 Abtastwerten der Momentanleistung über ein Zeitintervall von 10 Perioden dar. Je 10 Perioden sind angrenzende, nicht überlappende Intervalle.

Phasenwirkleistung:

$$P_{p} = \frac{1}{1024} \sum_{j=1}^{1024} p_{p_{j}} = \frac{1}{1024} \sum_{j=1}^{1024} U_{p_{j}} * I_{p_{j}}$$
 [W], *p*: 1,2,3 (7)

Scheinleistung und Blindleistung, Leistungsfaktor sowie Leistungsfaktorverschiebung ( $\cos \phi$ ) werden entsprechend den folgenden Gleichungen berechnet:

Phasen-Scheinleistung:  $S_p = U_p * I_p$  [VA], *p*: 1,2,3 (8)

Phasen-Blindleistung: 
$$Q_p = Sign(Q_p) \cdot \sqrt{S_p^2 - P_p^2}$$
 [VAr], *p*: 1,2,3 (9)

Zeichen von Blindleistung: 
$$Sign(Q_p) = \begin{cases} +1, \varphi_p \in [0^0 - 180^0] \\ -1, \varphi_p \in [0^0 - 180^0] \end{cases}$$
 p: 1,2,3 (10)

Phasen-Leistungsfaktor: 
$$PF_p = \frac{P_p}{S_p}$$
, p: 1,2,3 (11)

Cos 
$$\varphi$$
 (DPF):  $Cos \varphi_p = Cos \varphi u_p - Cos \varphi i_p$ , p: 1,2,3 (12)

### 5.1.6 Gesamtleistungsmessungen

Erfüllt: IEEE STD 1459-2000 (Abschnitt 3.2.2.2; 3.2.2.6) IEC 61557-12 (Anhang A)

Die Gesamtwirk- und Gesamtblindleistung sowie der Gesamtleistungsfaktor werden anhand der folgenden Gleichung berechnet:

Wirkleistung gesamt:	Pt = P1 + P2 + P3	[W],	(13)
Blindleistung gesamt (Vektor):	Qt = Q1 + Q2 + Q3	[VAr],	(14)

Scheinleistung gesamt (Vektor):  $St = \sqrt{Pt^2 + Qt^2}$  [VAr], (15)

Gesamtleistungsfaktor (Vektor):  $PFtot = \frac{Pt}{St}$  (16)



Abbildung 5.2: Vektordarstellung der Gesamtleistungsberechnung

### 5.1.7 Energie

Erfüllt: IEC 61557-12 (Anhang A)

Energiezähler sind mit der RECORDER-Funktionalität verknüpft. Energiezähler messen Energie nur, wenn der RECORDER aktiviert ist. Nach dem Ein- / Ausschaltvorgang und vor dem Start der Aufzeichnung werden alle Zähler gelöscht.

Das Instrument nutzt das 4-Quadrant-Messverfahren, das zwei Wirkenergiezähler (eP⁺, eP⁻) und zwei Blindenergiezähler (eQ⁺, eQ⁻), wie im Folgenden gezeigt.



Abbildung 5.3: Energiezähler und Abhängigkeit der Quadranten

Das Instrument kennt 3 verschiedene Zählereinstellungen:

1. Summenzähler **TotEN** messen die Energie für die gesamte Aufzeichnung. Beim Start der Aufzeichnung wird die gemessene Energie auf die bestehenden Zähler aufaddiert.
- 2. Der Teilperiodenzähler LastIP misst die Energie während der Aufzeichnung über das letzte Intervall. Sie wird am Ende jedes Intervalls berechnet.
- 3. Der Zähler für die aktuelle Periode **CUR.IP** misst die Energie während der Aufzeichnung über das aktuelle Zeitintervall.

#### 5.1.8 Harmonische und Interharmonische

Erfüllt: IEC 61000-4-30 Klasse A und S (Abschnitt 5.7) IEC 61000-4-7 Klasse I

Eine Berechnungsmethode mit der Bezeichnung schnelle Fourier-Transformation (FFT, Fast Fourier Transformation) wird zur Umformung der AD-gewandelten Eingangssignale in sinusförmige Komponenten genutzt. Die folgende Gleichung beschreibt die Beziehung zwischen Eingangssignal und der Frequenzdarstellung des Eingangssignals.



Abbildung 5.4: Strom- und Spannungsoberwellen

$$u(t) = c_0 + \sum_{k=1}^{512} c_k \sin\left(\frac{k}{10} \cdot 2\pi f_1 t + \varphi_k\right)$$
(17)

- f₁ Frequenz der Signalbasis (Beispiel: 50 Hz)
- c₀ Gleichstromkomponente

k – Ordinalzahl (Ordnung der Spektrallinie) relativ zur Frequenzbasis  $f_{C1} = \frac{1}{T_N}$ 

 $T_N$  – ist die Breite (oder Dauer) des Zeitfensters ( $T_N = N^*T_1$ ;  $T_1 = 1/f_1$ ). Als Zeitfenster bezeichnet man die Zeitspanne einer Zeitfunktion, über die die Fourier-Transformation durchgeführt wird.

$$c_k$$
 – ist die Amplitude der Komponente mit der Frequenz  $f_{Ck} = \frac{k}{10} f_1$ 

- $\phi_k$  ist Phase der Komponente  $c_k$
- $U_{c,k}$  ist der Effektivwert der Komponente  $c_k$

Phasenspannungs- und -strom-Oberwellen werden als RMS-Wert der Oberwellen-Untergruppe *(sg)* berechnet: Quadratwurzel als Summe der Quadrate des RMS-Werts einer harmonischen Oberwelle und zweier unmittelbarer Spektralkomponenten.

Spannungsoberwelle n. Ordnung: 
$$U_{p}h_{n} = \sqrt{\sum_{k=-1}^{1} U_{C,(10\cdot n)+k}^{2}}$$
 p: 1,2,3 (18)

Stromoberwelle n. Ordnung: 
$$I_{p}h_{n} = \sqrt{\sum_{k=-1}^{1} I_{C,(10\cdot n+k)}^{2}} p: 1,2,3$$
 (19)

Der Gesamtklirrfaktor wird als Quotient aus dem Effektivwert der Oberwellenuntergruppen und dem Effektivwert der zur Basisfrequenz gehörigen Untergruppe berechnet:

Gesamtspannungsklirrfaktor: 
$$THD_{U_p} = \sqrt{\sum_{n=2}^{40} \left(\frac{U_p h_n}{U_p h_1}\right)^2}$$
, p: 1,2,3 (20)

Gesamtstromklirrfaktor: 
$$THD_{Ip} = \sqrt{\sum_{n=2}^{40} \left(\frac{I_p h_n}{I_p h_1}\right)^2}$$
, p: 1,2,3 (21)

Spektralkomponenten zwischen zwei Untergruppen von harmonischen Oberwellen werden zur Bewertung von Interharmonischen herangezogen. Spannungs- und Strom-Untergruppen von Interharmonischen der n. Ordnung werden mithilfe des RSS-Prinzips (Wurzel aus Summe der Quadrate):

Interharmonische Spannungsoberwelle n. Ordnung:

$$U_{p}ih_{n} = \sqrt{\sum_{k=2}^{8} U_{C,(10\cdot n)+k}^{2}} \quad p: 1,2,3$$
(22)

Interharmonische Stromoberwelle n. Ordnung:

$$I_{p}ih_{n} = \sqrt{\sum_{k=2}^{8} I_{C,(10\cdot n+k)}^{2}} \quad p: 1,2,3$$
(23)



Abbildung 5.5: Illustration von Oberwellen-Untergruppen für 50 Hz-Versorgung (Harmonische / Interharmonische)

## 5.1.9 Signalwerte

Erfüllt: IEC 61000-4-30 Klasse A (Abschnitt 5.10)

Die Signalspannung wird über ein FFT-Spektrum eines 10-Zyklus-Intervalls berechnet. Der Wert der Netzsignalspannung wird gemessen als:

- RMS-Wert einer Einzelfrequenzgruppe, wenn die Signalfrequenz gleich der Spektralgruppenfrequenz ist oder
- RSS-Wert vierer benachbarter Frequenzgruppen, wenn die Signalfrequenz des Gruppenfrequenzsystems abweicht (z.B. wird ein Rundsteuersignal mit einem Frequenzwert von 218,1 Hz in einem 50 Hz-Netzsystem basierend auf den RMS-Werten der 210-, 215-, 220- und 225-Hz-Gruppen berechnet).

Ein Netzsignalwert der in einem 10er-Zyklus-Intervall berechnet wird, findet in Alarmund Aufzeichnungsabläufen Anwendung. Bei Aufzeichnungen gemäß EN50160 werden die Ergebnisse jedoch zusätzlich nach 3-s-Intervallen aggregiert. Diese Werte werden verwendet, wenn Sie gegen Grenzwerte aus Normen entgegengelaufen lassen werden.

#### 5.1.10 Flickern

Erfüllt: IEC 61000-4-30 Klasse S (Abschnitt 5.3) IEC 61000-4-15 :

Flickern (Flimmern) nennt man die visuelle Wahrnehmung, die von einem flackernden Licht verursacht wird. Der Grad der Wahrnehmung hängt von der Frequenz und der Größenordnung der Lichtschwankung sowie vom Beobachter selbst ab.

Die Lichtflussänderung steht in Wechselbeziehung zu einer Spannungshüllkurve wie die folgende Abbildung zeigt.



Abbildung 5.6: Spannungsfluktuation

Flickern wird in Übereinstimmung mit der Norm IEC 61000-4-15 "Prüf- und Messverfahren - Flickermeter - Funktionsbeschreibung und Auslegungsspezifikation" gemessen. Sie legt die Transformationsfunktion auf Basis einer 230V/60W-Lampem-Augen-Gehirn Kettenreaktion fest. Diese Funktion ist die Basis für die Flickermess-geräteimplementation und wird in der folgenden Abbildung gezeigt.



Abbildung 5.7: Kurve äquivalenter Schwere (Pst=1) für Rechteckspannungsänderungen bei Niederspannungsstromnetzen

P_{stp1min} – ist eine kurzfristige Flickerabschätzung auf Basis eines 1-minütigen Intervalls. Sie wird als fortlaufender Mittelwert berechnet und wird verwendet, um eine schnelle Einschätzung für den 10-minütigen Wert zu erhalten.

P_{stp} – kurzfristiges Flickern wird entsprechend IEC 61000-4-15 wie folgt berechnet

P_{ltp} – langfristiges Flickern wird entsprechend der folgenden Formel berechnet:

$$P_{ltp} = \sqrt[3]{\frac{\sum_{i=1}^{N} Pst_i^3}{N}} p: 1, 2, 3$$
(24)

#### 5.1.11 Spannungs- und Strom-Asymmetrie

Erfüllt: IEC 61000-4-30 Klasse A (Abschnitt 5.7.1)

Die Asymmetrie der Versorgungsspannung wird anhand des Verfahrens der symmetrischen Komponenten beurteilt. Zusätzlich zur positiven Sequenzkomponente U⁺, existiert unter asymmetrischen Bedingungen auch eine negative Sequenzkomponente U⁻ sowie eine Nullsequenzkomponente U₀. Diese Größen werden nach den folgenden Formeln berechnet:

$$\vec{U}^{+} = \frac{1}{3}(\vec{U}_{1} + a\vec{U}_{2} + a^{2}\vec{U}_{3})$$

$$\vec{U}_{0} = \frac{1}{3}(\vec{U}_{1} + \vec{U}_{2} + \vec{U}_{3}),$$

$$\vec{U}^{-} = \frac{1}{3}(\vec{U}_{1} + a^{2}\vec{U}_{2} + a\vec{U}_{3}),$$
(25)

wobei  $a = \frac{1}{2} + \frac{1}{2}j\sqrt{3} = 1e^{j120^{0}}$ .

Bei der Berechnung der Asymmetrie verwendet das Instrument die Grundkomponente des Spannungseingangssignals ( $U_1$ ,  $U_2$ ,  $U_3$ ), gemessen über ein Zeitintervall von 10 Perioden.

Das in Prozent ausgedrückte Negativsequenzverhältnis u⁻ berechnet sich aus:

$$u^{-}(\%) = \frac{U^{-}}{U^{+}} \times 100 \tag{26}$$

Das in Prozent ausgedrückte Nullsequenzverhältnis u⁰ berechnet sich aus:

$$u^{0}(\%) = \frac{U^{0}}{U^{+}} \times 100 \tag{27}$$

**Hinweis:** In 3W-Systeme sind die Nullsequenzkomponenten  $U_0$  und  $I_0$  per definitionem Null.

Die Einspeisestromasymmetrie berechnet sich auf die gleiche Weise.

#### 5.1.12 Spannungsereignisse

Messverfahren für Spannungsabfälle  $(U_{Dip})$ , -anstiege  $(U_{Swell})$ , Minimal-  $(U_{Rms(1/2)Min})$  und Maximalwerte  $(U_{Rms(1/2)Max})$ 

Erfüllt: IEC 61000-4-30 Klasse A und S (Abschnitt 5.4.1)

Grundlage der Messung von Spannungsereignissen ist U_{Rms(1/2)}.

U_{Rms(1/2)} ist der Wert der über 1 Periode gemessenen Effektivspannung, beginnend mit dem Nulldurchgang der Basis und aktualisiert mit jeder Halbperiode.

Die Periodendauer für  $U_{Rms(1/2)}$  ist von Frequenz abhängig, die sich aus der Frequenzmessung über 10 Perioden ergibt. Im Wert  $U_{Rms(1/2)}$  sind definitionsgemäß Harmonische, Interharmonische, Netzsignalspannungen, etc. enthalten.

#### Spannungsabfall

#### Erfüllt: IEC 61000-4-30 Klasse S (Abschnitt 5.4.2)

Der Schwellenwert für den Spannungsabfall wird als Prozentwert der Nennspannung im Menü EVENT SETUP (EREIGNIS EINRICHTEN) definiert. Der Schwellenwert des Spannungsabfalls wird vom Benutzer zweckabhängig festgelegt. Die Ereignisbewertung des Instruments hängt von Anschlusstyp ab:

- Bei Einphasensystemen beginnt ein Spannungsabfall, sobald die Spannung U_{Rms(1/2)} den Schwellenwert für den Spannungsabfall unterschreitet, und er endet, wenn die Spannung U_{Rms(1/2)} größer gleich dem Schwellenwert für den Spannungsabfall plus 2% der Hysteresespannung ist (s. Abbildung 5.8)
- Bei Dreiphasensystemen gibt es zwei verschiedene Bewertungsverfahren, die gleichzeitig zur Beurteilung verwendet werden:
  - Ein Spannungsabfall beginnt, sobald die Spannung U_{Rms(1/2)} von mindestens einem Kanal den Schwellenwert für den Spannungsabfall unterschreitet, und er endet, wenn die Spannung U_{Rms(1/2)} aller gemessenen Kanäle größer gleich dem Schwellenwert für den Spannungsabfall plus 2% der Hysteresespannung ist.
  - Ein Spannungsabfall beginnt, sobald die Spannung U_{Rms(1/2)} eines Kanals den Schwellenwert für den Spannungsabfall unterschreitet, und er endet, wenn die Spannung U_{Rms(1/2)} größer gleich dem Schwellenwert für den Spannungsabfall plus 2% der Hysteresespannung an der selben Phase ist.

Ein Spannungsabfall weist 2 charakteristische Eigenschaften auf: Remanenzspannung  $U_{Dip}$  und Dauer des Spannungsabfalls:

- U_{Dip} ist die Remanenzspannung, die niedrigste auf einem beliebigen Kanal während des Spannungsabfalls gemessene Spannung U_{Rms(1/2)}.
- Der Beginn des Spannungsabfalls ist die Zeit, die dem Zeitstempel des Beginns der Spannung U_{Rms(1/2)} des Kanals, der das Ereignis auslöste, entspricht und das Ende des Spannungsabfalls ist die Zeit, die dem Zeitpunkt des Endes der Spannung U_{Rms(1/2)}, die das Ereignis beendet, entspricht, entsprechend der Definition des Schwellenwerts für den Spannungsabfall.
- Die Dauer eines Spannungsabfalls entspricht der Zeit zwischen Beginn und Ende des Spannungsabfalls.



Abbildung 5.8 Definition Spannungsereignisse

#### Spannungsanstieg

Erfüllt: IEC 61000-4-30 Klasse S (Abschnitt 5.4.3)

Der Schwellenwert für den Spannungsanstieg wird als Prozentwert der Nennspannung im Menü Voltage Events (Spannungsereignisse) definiert. Der Schwellenwert des Spannungsanstiegs wird vom Benutzer zweckabhängig festgelegt. Das Instrument ermöglicht die Beurteilung von Spannungsanstiegen wie folgt:

- Bei Einphasensystemen beginnt ein Spannungsanstieg, sobald die Spannung U_{Rms()} den Schwellenwert für den Spannungsanstieg überschreitet, und er endet, wenn die Spannung U_{Rms(1/2)} kleiner gleich dem Schwellenwert für den Spannungsanstieg plus 2% der Hysteresespannung ist (s. Abbildung 5.8)
- Bei Dreiphasensystemen gibt es zwei verschiedene Bewertungsverfahren, die gleichzeitig zur Beurteilung verwendet werden:
  - Ein Spannungsanstieg beginnt, sobald die Spannung U_{Rms(1/2)} von mindestens einem Kanal den Schwellenwert f
    ür den Spannungsanstieg

überschreitet, und er endet, wenn die Spannung  $U_{\text{Rms}(1/2)}$  aller gemessenen Kanäle kleiner gleich dem Schwellenwert für den Spannungsanstieg plus 2% der Hysteresespannung ist.

 $\circ\,$  Ein Spannungsanstieg beginnt, sobald die Spannung  $U_{Rms(1/2)}$  eines Kanals den Schwellenwert für den Spannungsanstieg überschreitet, und er endet, wenn die Spannung  $U_{Rms(1/2)}$  kleiner gleich dem Schwellenwert für den Spannungsanstieg plus 2% der Hysteresespannung an der selben Phase ist.

Ein Spannungsanstieg weist 2 charakteristische Eigenschaften auf: Maximalwert des Spannungsanstiegs und dessen Dauer:

- U_{Swell} Maximalwert des Spannungsanstiegs entspricht dem größten auf einem beliebigem Kanal gemessenen Spannungswert U_{Rms(1/2)}.
- Der Beginn des Spannungsanstiegs ist die Zeit, die dem Zeitstempel des Beginns der Spannung U_{Rms(1/2)} des Kanals, der das Ereignis auslöste, entspricht und das Ende des Spannungsanstiegs ist die Zeit, die dem Zeitpunkt des Endes der Spannung U_{Rms(1/2)}, die das Ereignis beendet, entspricht, entsprechend der Definition des Schwellenwerts für den Spannungsanstieg.
- Die Dauer eines Spannungsanstiegs entspricht der Zeit zwischen Beginn und Ende des Spannungsanstiegs.

#### Spannungsunterbrechung

Erfüllt: IEC 61000-4-30 Klasse A und S (Abschnitt 5.5)

Das Messverfahren für Spannungsunterbrechungen ist das gleiche wie das für Spannungsanstiege bzw. Spannungsabfälle verwendete und in den vorstehenden Abschnitten verwendete Messverfahren.

Der Schwellenwert für die Spannungsunterbrechung wird als Prozentwert der Nennspannung im Menü Voltage Events (Spannungsereignisse) definiert. Der Schwellenwert die Spannungsunterbrechung wird vom Benutzer zweckabhängig festgelegt. Das Instrument ermöglicht die Beurteilung von Spannungsunterbrechungen wie folgt:

- Bei Einphasensystemen beginnt eine Spannungsunterbrechung, sobald die Spannung U_{Rms(1/2)} den Schwellenwert für die Spannungsunterbrechung unterschreitet, und sie endet, wenn die Spannung U_{Rms(1/2)} größer gleich dem Schwellenwert für die Spannungsunterbrechung plus Hysterese ist (s. Abbildung 5.8).
- Bei Mehrphasensystemen gibt es zwei verschiedene Bewertungsverfahren, die gleichzeitig zur Beurteilung verwendet werden:
  - Eine Spannungsunterbrechung beginnt, sobald die Spannung U_{Rms(1/2}) eines Kanals den Schwellenwert für die Spannungsunterbrechung unterschreitet, und sie endet, wenn die Spannung U_{Rms(1/2)} an mindestens einem der Kanäle größer gleich dem Schwellenwert für die Spannungsunterbrechung plus Hysterese ist.
  - Eine Spannungsunterbrechung beginnt, sobald die Spannung U_{Rms(1/2)} eines Kanals den Schwellenwert für die Spannungsunterbrechung unterschreitet, und sie endet, wenn die Spannung U_{Rms(1/2)} größer gleich dem Schwellenwert für die Spannungsunterbrechung plus 2% der Hysteresespannung an der selben Phase ist.

Eine Spannungsunterbrechung weist 2 charakteristische Eigenschaften auf: Minimalspannungswert der Spannungsunterbrechung und dessen Dauer:

- U_{Int} Maximalwert der Spannungsunterbrechung entspricht dem niedrigsten auf einem beliebigen Kanal während der Unterbrechung gemessenen Spannungswert U_{Rms(1/2)}.
- Der Beginn der Spannungsunterbrechung ist die Zeit, die dem Zeitstempel des Beginns der Spannung U_{Rms(1/2)} des Kanals, der das Ereignis auslöste, entspricht und das Ende der Spannungsunterbrechung ist die Zeit, die dem Zeitpunkt des Endes der Spannung U_{Rms(1/2)}, die das Ereignis beendet, entspricht, entsprechend der Definition des Schwellenwerts.
- Die Dauer eines Spannungsabfalls entspricht der Zeit zwischen Beginn und Ende des Spannungsabfalls.

#### 5.1.13 Alarme

Allgemein kann man Alarme als Ereignisse auf eine willkürliche Messgröße ansehen. Alarme werden in der Alarmtabelle definiert (Alarmtabelle einrichten, s. 3.16.3). Das grundlegende Messzeitintervall für: Spannung, Strom, Wirk-, Blind- und Scheinleistung, Oberwellen und Asymmetriealarme ist ein 10er-Zyklus-Zeitintervall. Flickeralarme werden entsprechend dem Flickeralgorithmus (Pst_{1min}>1 min, Pst > 10 min, Plt > 10 min) bewertet.

Jeder Alarm hat die in der folgenden Tabelle beschriebenen Attribute. Ein Alarm tritt auf, wenn ein über 10 Perioden gemessener Wert für die unter **Phase**, definierte Phase den unter **Trigger Slope** (Auslösesteigung) definierten **Schwellenwert** mindestens für den unter **Minimal Duration** (Minimaldauer) festgelegte Zeitwert durchläuft.

Größe	<ul> <li>Spannung</li> <li>Strom</li> <li>Frequenz</li> <li>Wirk-, Blind- und Scheinleistung</li> <li>Harmonische und Interharmonische</li> <li>Asymmetrie</li> <li>Flickers</li> <li>Netzeignele</li> </ul>
Phase	L1, L2, L3, L12, L23, L31, All, Tot
<b>Trigger Slope</b> (Auslöseflanke)	< - fallend, > - steigend
Threshold value (Schwellenwert)	[Zahl]
<b>Minimal duration</b> (Mindestdauer)	200 ms ÷ 10 min

Tabelle 5.1: Alarmdefinitionsparameter

Jeder erfasste Alarm wird durch die folgenden Parameter beschrieben:

Date (Datum)	Datum, an dem der ausgewählte Alarm eingetreten ist
Start	Startzeit des Alarms - erstes Durchlaufen des Schwellenwerts
Phase	Phase, an der der Alarm aufgetreten ist
Level	Minimal bzw. Maximalwert im Alarm
Duration (Dauer)	Alarmdauer

#### 5.1.14 Datenaggregation bei der ALLGEMEINEN AUFZEICHNUNG

Erfüllt IEC 61000-4-30 Klasse S (Abschnitt 4.5.3)

Zeitaggregationsperiode (IP) während der Aufzeichnung wird durch den Parameter Intervall: x min im RECORDER-Menü definiert.

Ein neues Aufzeichnungsintervall (IP-Zeitintervall) beginnt erst nach Ablauf des vorherigen Intervalls mit Beginn des nächsten Zeitintervalls von 10 Perioden. Die Daten für das IP-Zeitintervall IP werden aus Zeitintervallen von 10-Perioden gesammelt, wie in der folgenden Abbildung dargestellt. Das gesammelte Intervall wird mit dem Absolutzeitwert gestempelt. Der Zeitstempel ist die Zeit bei Abschluss des Intervalls. Es gibt weder Lücken noch Überlappung während der Aufzeichnung, wie die folgende Abbildung zeigt.



Abbildung 5.9: Synchronisierung und Aggregation von Intervallen mit 10 Zyklen

Für jedes Aggregationsintervall berechnet das Instrument den Mittelwert der Messgröße. Messgrößenabhängig kann dies das quadratische oder das arithmetische Mittel sein. Beide Gleichungen sind im Folgenden abgebildet.

#### Quadratisches Mittel

$$A_{RMS} = \sqrt{\frac{1}{N} \sum_{j=1}^{N} A_j^2}$$
(28)

wobei:

A_{RMS} – Mittelwert der Messgröße über das gegebene Aggregationsintervall

A – Messgröße für 10 Perioden

N – Anzahl der 10-Perioden-Messzyklen pro Aggregationsintervall.

Arithmetisches Mittel: 
$$A_{avg} = \frac{1}{N} \sum_{j=1}^{N} A_j$$
 (29)

wobei:

A_{avg} – Mittelwert der Messgröße über das gegebene Aggregationsintervall

A – Messgröße für 10 Perioden

N – Anzahl der 10-Perioden-Messzyklen pro Aggregationsintervall.

In der nächsten Tabelle wird das Mittelwertberechnungsverfahren für die jeweilige Messgröße aufgeführt:

Gruppe	Wert	Aggregationsverfahren	
	U _{Rms}	RMS	
Spannung	THDU	RMS	
	U _{cf}	Arithm. Mittel	
	I _{Rms}	RMS	
Strom	THDI	RMS	
	I _{cf}	Arithm. Mittel	
Frequenz	f	Arithm. Mittel	
	Р	Arithm. Mittel	
	Q	Arithm. Mittel	
Leistung	S	Arithm. Mittel	
	PF	Arithm. Mittel	
	DPF (cos φ)	Arithm. Mittel	
	$U^+$	RMS	
	U	RMS	
	U ⁰	RMS	
	u-	RMS	
Currana atria	u0	RMS	
Symmetrie	⁺	RMS	
	ŀ	RMS	
	10	RMS	
	i-	RMS	
	iO	RMS	
Oberwellen	Uh ₁₊₅₀	RMS	
Oberweilen	Ih _{1÷50}	RMS	
Interharmonische	Uh ₁₊₅₀	RMS	
Oberwellen	Ih _{1÷50}	RMS	
Netzsignale	U _{Sig}	RMS	

Tabelle 5.3: Daten-Aggregationsmethoden

Welche Parameter während der Aufzeichnung aufgezeichnet werden, ist vom Anschlusstyp und Synchronisierungskanal abhängig, wie in Tabelle 4.7 gezeigt. Für jeden Parameter werden folgende Werte aufgezeichnet:

- Minimalwert,
- Mittelwert,
- Maximalwert,
- aktiver Mittelwert,

die Werte werden je Zeitintervall aufgezeichnet.

**Hinweis:** Bei der Aufzeichnung gemäß EN 50160 werden nur Mittelwerte gespeichert. Für eine Aufzeichnung nach EN50160 mit Minimal- und Maximalwerten ist ein allgemeiner Aufzeichnungsmodus zu verwenden, welcher im Anschluss mithilfe der Software Powerview v2.0 in einen EN50160- Datensatz umgewandelt wird. Ein *aktiver Mittelwert* wird nach dem gleichen Verfahren wie der Mittelwert (als arithmetisches oder quadratisches Mittel) berechnet, es werden aber nur jene Teile der Messung berücksichtigt, für die das Attribut "active" (aktiv) gesetzt ist:

Quadratisches aktives Mittel

$$A_{RMSact} = \sqrt{\frac{1}{M} \sum_{j=1}^{M} A_j^2}; M \le N$$
(30)

wobei:

A_{RMSact} – Mittelwert der Messgröße für den aktiven Teil eines gegebenen Aggregationsintervalls,

A – Messgrößenwert über 10 Perioden mit dem Attribut "active",

M – Anzahl der 10-Periodenzyklen mit aktivem Wert.

Arithmetisches aktives Mittel:

$$A_{avgact} = \frac{1}{M} \sum_{j=1}^{M} A_j; M \le N$$
(31)

wobei:

A_{avgact} – Mittelwert der Messgröße für den aktiven Teil eines gegebenen Aggregationsintervalls,

A – Messgrößenwert über 10 Perioden mit dem Attribut "active",

M – Anzahl der 10-Periodenzyklen mit aktivem Wert.

Das Aktivattribut wird für eine bestimmte Messgröße gesetzt, wenn:

- Der Phasen- / Leitungswert (RMS) größer ist als der untere Grenzwert eines Messbereichs (Details siehe technische Spezifikation): Effektivwert, Oberwellen und Gesamtklirrfaktor für Spannung und Strom, Spannungsflicker.
- Der Lasttyp des Zwei- oder Vierquadrantbereichs stimmt überein (Details in *Leistungs- und Energieaufzeichnung*): aktive, reaktive Leistung und Scheinleistung, Leistungsfaktor und Leistungsfaktorverschiebung.

Frequenz- und Asymmetriemessungen werden bei der Aufzeichnung stets als Aktivwerte berücksichtigt.

Die folgende Tabelle zeigt die Anzahl der Signale für jede Parametergruppe im RECORDER.

	1-L	3-L	4-L
TTTF	13 Größen	20 Größen	35 Größen
0,1,1	52 Werte per Intervall	80 Werte per Intervall	140 Werte per Intervall
Leistung &	16 Größen	12 Größen	60 Größen
Energie	64 Werte per Intervall	48 Werte per Intervall	240 Werte per Intervall
	3 Größen	9 Größen	9 Größen
Flicker	12 Werte per Intervall	36 Werte per Intervall	36 Werte per Intervall
Symmotric		2 Größen	4 Größen
Symmetrie	_	8 Werte per Intervall	16 Werte per Intervall
Ohamwallan	202 Größen	303 Größen	416 Größen
Oberwenen	800	1212 Werte per Intervall	1628 Werte per Intervall
Interharmonische	202 Größen	303 Größen	416 Größen
Oberwellen	800	1212 Werte per Intervall	1628 Werte per Intervall
Summe	235	347	524

Tabelle 5.4: Gesamtzahl aufgezeichneter Größen
------------------------------------------------

#### Leistungs- und Energieaufzeichnung

Die Wirkleistung wird in zwei Teile geteilt: Import (positiv, Motor) und Export (negativ, Generator). Die Blindleistung und der Leistungsfaktor werden in vier Teile geteilt: positiv-induktiv (+i), positiv-kapazitiv (+c), negativ-induktiv (-i) und negativ-kapazitiv (-c). Die folgende folgenden Abbildung zeigt das Motor- / Generator- sowie Induktiv / Kapazitiv-Phasen- bzw. -Polaritätsdiagramm:

$P^{+} = 0$ $P^{-} = P_{x}$ $Q_{i}^{+} = 0$ $Q_{c}^{-} = 0$ $Q_{c}^{-} = Q_{x}$ $Pf_{i}^{+} = na$ $Pf_{c}^{-} = na$ $Pf_{c}^{-} = Pf_{x}$ $ePpos = 0$ $ePneg = P_{x}^{*}$ $eQpos = Q_{x}^{*}$ $eQneg = 0$ 180'	g <b>ENERATOR MODE</b> t t Capacitive generator	0' MOTOR MODE TYPE Inductive load	$P^{+} = P_{x}$ $P^{-} = 0$ $Q_{i}^{+} = Q_{x}$ $Q_{i}^{-} = 0$ $Q_{c}^{-} = 0$ $Pf_{i}^{+} = Pf_{x}$ $Pf_{i}^{-} = na$ $Pf_{c}^{-} = na$ $Pf_{c}^{-} = na$ $Pf_{c}^{-} = na$ $ePpos = P_{x} * t$ $ePneg = 0$ $eQpos = Q_{x} * t$ $eQneg = 0$
$P^{+} = 0$ $P^{-} = P_{x}$	GENERATOR MODE	MOTOR MODE	$P^{+} = P_{x}$ $P^{-} = 0$ $\Omega^{+} = 0$
$Q_i^{T} = 0$ $Q_c^{T} = Q_x$ $Q_c^{T} = 0$ $Q_c^{T} = 0$ $Pf_i^{T} = na$ $Pf_c^{T} = na$ $Pf$	Inductive generator	Capacitive load	$Q_i^- = 0$ $Q_c^+ = Q_x$ $Q_c^- = 0$ $Pf_i^+ = na$ $Pf_c^- = na$ $Pf_c^- = na$ $ePpos = P_x * t$ ePneg = 0 eQpos = 0 $eQneg = Q_x * t$

Abbildung 5.10: Phasen- / Polaritätsdiagramm für Motor- / Generator- und induktive / kapazitive Leistung

#### 5.1.15 Momentanwert einer Wellenform

Während der Messungen können PowerQ4 / PowerQ4 Plus den Momentanwert einer Wellenform aufzeichnen. Das ist besonders nützlich, wenn zwischenzeitliche Eigenschaften oder ein momentanes Netzverhalten gespeichert werden soll. Die Momentanwertfunktion speichert alle Netzsignaturen und -abtastungen über 10 Zyklen. Durch Verwenden der MEMORY LIST-Funktion (siehe 3.10) oder mithilfe der PowerView v2.0-Software kann der Benutzer die gespeicherten Daten einsehen.

#### 5.1.16 Wellenform-Datensatz

Ein Wellenform-Datensatz besteht aus einer einstellbaren Anzahl aufeinanderfolgender Momentanaufnahmen einer Wellenform. Der Wellenform-Recorder startet, wenn der voreingestellte Auslösewert auftritt. Der Speicherpuffer wird in Vorauslöser- und Nachauslöserpuffer unterteilt. Die Vorauslöser- und Nachauslöserpuffer weisen Momentanwerte von Wellenformen vor und nach Auftreten des Auslösewerts auf. Mehrere Auslösersignale sind möglich:

- Manueller Auslöser Der Benutzer löst die Wellenform-Aufzeichnung manuell aus.
- Spannungsereignisse Das Instrument startet den Wellenform-Recorder, wenn ein bestimmtes Spannungsereignis auftritt.
- Alarme Das Instrument startet den Wellenform-Recorder, wenn ein Alarm der Alarmliste erfasst wird.
- Spannungsereignisse und Alarme Das Instrument startet den Wellenform-Recorder, wenn entweder ein Spannungsereignis oder ein Alarm auftreten.

Der Benutzer kann einzelne oder fortlaufende Wellenform-Datensätze aufzeichnen. Bei fortlaufenden Wellenform-Aufzeichnungen initialisiert PowerQ4 / PowerQ4 Plus automatisch eine Wellenform-Aufzeichnung, sobald die vorige abgeschlossen ist. Das bedeutet, dass der nachfolgende Datensatz erst initialisiert wird, wenn der vorherige komplett aufgezeichnet und im Speicher des Instruments abgelegt wurde.

**Hinweis:** Das Speichern von Daten führt zu einer "Totzeit" zwischen den fortlaufenden Wellenform-Aufzeichnungen. Diese Totzeit ist abhängig von der Datensatzlänge und Anzahl der ausgewählten Datensatzsignale und dauert üblicherweise einige Sekunden.

#### 5.1.17 Transienten-Recorder

Die Transienten-Recorder-Funktion ähnelt der des Wellenform-Recorders: Auf ein Auslösersignal hin werden auswählbare Abtastungen vor und nach dem Auslösersignal gespeichert, jedoch mit einer um Faktor 10 höheren Abtastrate.

Der Recorder verwendet das Hüllkurven-Auslöseverfahren. Das Auslösersignal tritt auf, wenn die Differenz zwischen zwei aufeinanderfolgenden Perioden mit Eingangsspannungssignalen größer ist als der gegebene Grenzwert.

Der Transienten-Recorder speichert einen Zyklus des Netzsignals.



Abbildung 5.11: Erfassung des Auslösers für Transienten

**Hinweis:** Das Speichern von Daten führt zu einer "Totzeit" zwischen den aufeinanderfolgenden Transienten-Aufzeichnungen. Diese Totzeit ist abhängig von der Datensatzlänge und Anzahl der ausgewählten Datensatzsignale und dauert üblicherweise einige Sekunden.

#### 5.1.18 Recorder für Einschaltspitze

Einschaltspitzen-Aufzeichnung dient der Analyse Die von Spannungsund Stromschwankungen während des Anlaufens eines Motors oder anderer leistungsintensiver Verbraucher. Bei Stromwerten von I1/2Rms wird der Wert einer Halbzyklusperiode (RMS, aktualisiert nach halbem Zyklus) gemessen, bei Spannungen von  $U_{Rms(1/2)}$  (ein Zyklus RMS-Spannung, zu jedem halben Zyklus aktualisiert) wird der Wert für jeden Intervall gemessen. Wenn der Benutzer ein 10ms-Intervall im Einschaltspitzen-Menü wählt, so werden die gemessenen Werte für Halbzyklen ebenfalls im Datensatz gespeichert. Wenn ein größeres Intervall wie 20 ms, 100 ms oder 200 ms gewählt wird, misst das Instrument im Durchschnitt 2, 10 oder 20 Mal und nutzt diese Werte für weitere Aktionen (Auslöser, Recorder). Der Einschaltspitzen-Recorder startet, wenn der voreingestellte Auslösewert auftritt.



Abbildung 5.12: Einschaltspitze (Wellenform und RMS)

Der Speicher verfügt über einen Vor- (gemessene Werte vor dem Auslösepunkt) und Nachpuffer (gemessene Werte nach dem Auslösepunkt).

Triggering



Pre-buffer: 0 to (Total buffer – 1) Pre-buffer is treated as negative time



Der Benutzer kann zwischen einzelner und fortlaufender Einschaltspitzen-Protokollierung wählen. Bei fortlaufenden Einschaltspitzen-Aufzeichnungen initialisiert PowerQ4 / PowerQ4 Plus automatisch eine Einschaltspitzen-Protokollierung, sobald die vorige abgeschlossen ist. Zwei aufeinanderfolgende *Initial*-Protokollierungen von Einschaltspitzen können ohne "Totzeit" durchgeführt werden. Das bedeutet, dass der dritte Einschaltspitzen-Datensatz erst aufgezeichnet wird, wenn der vorherige komplett aufgezeichnet und im Speicher des Instruments abgelegt wurde. Diese Totzeit ist abhängig von der Datensatzlänge und Anzahl der ausgewählten Datensatzsignale und dauert üblicherweise einige Sekunden.

**Hinweis:** Die Intervalle und Auslöserschwellen sind voneinander abhängig. Falls der Benutzer ein Intervall von 10 ms wählt, löst das Instrument aus, sobald der Wert die Schwelle für einen halben Zyklus überschreitet. Falls der Benutzer ein Intervall von 200 ms wählt, müssen mindestens 20 aufeinanderfolgende Halbzyklus-Messungen den Auslösewert überschreiten, bis die Auslösung vorgenommen wird.

# 5.2 Überblick zur Norm EN 50160

Die Norm EN 50160 definiert, beschreibt und spezifiziert die Hauptmerkmale einer Spannung an den Versorgungsanschlüssen eines öffentlichen Nieder- und Mittelspannungsnetzes unter normalen Betriebsbedingungen. Diese Norm beschreibt die Grenzen oder Werte, innerhalb derer die Spannungseigenschaften im gesamten öffentlichen Netzwerk gleich bleiben. Sie beschreibt nicht die Durchschnittssituation eines individuellen Netzwerkbenutzers. In der folgenden Tabelle wird ein Überblick über die Grenzen der Norm EN 50160 gegeben.

Versorgungsspannungs- phänomen	Akzeptable Grenzwerte	Mess- Intervall	Über- wachungs- periode	Akzeptanzwert (Prozent)
Netzfrequenz	49,5 ÷ 50,5 Hz 47,0 ÷ 52,0 Hz	10 s	1 Woche	99,5 % 100 %
Sobwonkung der	230 V ± 10 %			95 %
Versorgungsspannung, U _{Nom}	23 +10 % 0 V -15 %	10 Min.	1 Woche	100 %
Flickerstärke Plt	Plt ≤ 1	2 h	1 Woche	95 %
Spannungsabfälle (≤ 1 Min.)	10 bis 1000 Mal (unter 85 % von U _{Nom} )	10 ms	1 Jahr	100 %
Unterbrechungen, kurz (≤ 3 Min.)	10 ÷ 100 Mal (unter 1 % von U _{Nom} )	10 ms	1 Jahr	100 %
Zufällige, lange Unterbrechungen (> 3 Min.)	10 ÷ 50 Mal (unter 1 % von U _{Nom} )	10 ms	1 Jahr	100 %
Spannungsasymmetrie u-	0 ÷ 2 %, gelegentlich 3 %	10 Min.	1 Woche	95 %
Gesamtklirrfaktor, THD _U	8 %	10 Min.	1 Woche	95 %
Oberwellenspannungen, Uh _n	S. Tabelle 5.6	10 Min.	1 Woche	95 %
Netzsignale	S. Abbildung 5.15	2 s	1 Tag	99 %

Tabelle 5.5: Überblick über EN 50160

# 5.2.1 Netzfrequenz

Die Nominalfrequenz (Nennfrequenz) einer Versorgungsspannung muss 50 Hz betragen bei Systemen, die eine synchrone Verbindung mit einem vernetzten System haben. Unter normalen Betriebsbedingungen wird der Mittelwert der Grundfrequenz über 10 s gemessen und muss in folgendem Toleranzbereich liegen:

50 Hz ± 1 % (49,5 Hz .. 50,5 Hz) während 99,5 % des Jahres;

50 Hz + 4 % / - 6 % (d.h. 47 Hz .. 52 Hz) während 100 % der Betriebszeit.

#### 5.2.2 Schwankungen der Versorgungsspannung

Unter normalen Betriebsbedingungen sollen für alle Perioden einer Woche 95 % des 10-minütigen Mittelwerts  $U_{Rms}$  der Versorgungsspannung im Bereich von  $U_{Nom} \pm 10$  % liegen, und alle Werte  $U_{Rms}$  der Versorgungsspannung müssen im Bereich von  $U_{Nom} + 10$  % / - 15 % liegen.

#### 5.2.3 Spannungsabfälle (indikativische Werte)

Unter normalen Betriebsbedingungen ist die zu erwartende Anzahl an Spannungsabfällen in einem Jahr zwischen mehreren Zehn und einem Tausend. Die Mehrzahl der Spannungsabfälle dauert wenige als 1 s und zeigt eine Restspannung von größer 40 %. Es kann in unregelmäßigen Abständen zu größeren Spannungsabfällen kommen. In einigen Bereichen sind Spannungsabfälle mit einer Restspannung von 85 % bis 90 % von  $U_{Nom}$  infolge der Schaltlasten in den Anlagen der Benutzer sehr häufig.

#### 5.2.4 Kurze Unterbrechung der Versorgungsspannung

Unter normalen Betriebsbedingungen beträgt die jährliche Häufigkeit an kurzen Unterbrechungen der Versorgungsspannung zwischen einigen zehn und einigen hundert. Die Dauer von rund 70 % der Kurzunterbrechungen beträgt weniger als eine Sekunde.

#### 5.2.5 Lange Unterbrechung der Versorgungsspannung

Unter normalen Betriebsbedingungen beträgt die jährliche Häufigkeit von zufälligen längeren Unterbrechungen der Stromversorgung mit weniger als drei Minuten Ausfalllänge unter 10 und bis zu 50, je nach Region.

#### 5.2.6 Asymmetrie der Versorgungsspannung

Unter normalen Betriebsbedingungen sollen 95 % des 10-minütigen Mittels des Effektivwerts der Negativ-Phasensequenzkomponente (Basiswert) der Versorgungsspannung im Bereich zwischen 0 % und 2 % der Positiv-Phasensequenzkomponente (Basiswert) liegen. In einigen Bereichen in denen besonders viele Ein- und Zweiphasenanlagen im Netz vorhanden sind, kann die Asymmetrie bis ca. 3 % an der Dreiphasenstromversorgung betragen.

#### 5.2.7 THD-Spannung und Oberwellen

Über eine Woche sollen unter normalen Betriebsbedingungen 95 % des 10-minütigen Mittels des für jede individuelle Oberwellenspannung kleiner gleich dem in der folgenden Tabelle angegebenen Wert sein.

Darüber hinaus müssen die THD_U Werte der Versorgungsspannung (einschließlich aller Oberwellen bis zur 40. Ordnung) kleiner gleich 8 % sein.

Ungerade Vielfache			Gera	de Vielfache	
Vielfache	von 3	Vielfache	von 3		
h-te	Relativspannung	h-te	Relativspannung	h-te	Relativspannung
Ordnung	(U _N )	Ordnung	(U _N )	Ordnung	(U _N )
5	6,0 %	3	5,0 %	2	2,0 %
7	5,0 %	9	1,5 %	4	1,0 %
11	3,5 %	15	0,5 %	624	0,5 %
13	3,0 %	21	0,5 %		
17	2,0 %				
19	1,5 %				
23	1,5 %				
25	1,5 %				

Tabelle 5.6: Werte für Oberwellenspannungen der Versorgungsspannung

#### 5.2.8 Interharmonische Oberwellenspannung

Das Niveau an interharmonischen Oberwellenspannungen steigt aufgrund der Entwicklung der Frequenzwandler und ähnlichen Steuergeräten an. Dieses Niveau werden beobachtet und erfordern weitere Erfahrungswerte. In einigen Fällen verursachen interharmonische Oberwellenspannungen, auch bei geringerem Auftreten, Flicker (siehe 5.2.10) oder Interferenzen in den Rundsteueranlagen.

#### 5.2.9 Netzsignale an der Versorgungsspannung

In einigen Ländern können zur Signalübertragung die öffentlichen Versorgungsnetze des öffentlichen Versorgers genutzt werden. Während 99 % der Tageszeit muss der Mittelwert von 3 s für Signalspannungen gleich oder kleiner sein als die Werte in der folgenden Abbildung.



Abbildung 5.14: Netzsignalspannungs-Grenzwerte gemäß EN50160

#### 5.2.10 Flickerstärke

Während einer Woche soll über 95 % der Zeit unter normalen Betriebsbedingungen die langfristige Flickerstärke aufgrund von Spannungsschwankungen  $P_{tt} \le 1$  betragen.

#### 5.2.11 PowerQ4 / PowerQ4 Plus-Recordereinstellung für EN 50160-Messungen

PowerQ4 / PowerQ4 Plus sind in der Lage, Prüfungen gemäß EN 50160 für alle in den vorstehenden Abschnitten beschriebenen Werte durchzuführen. Zur Vereinfachung des Vorgehens verfügt PowerQ4 / PowerQ4 Plus über eine entsprechende Recorderkonfiguration (EN510160). Standardmäßig werden alle Stromparameter (RMS, THD usw.) in die Messungen einbezogen und können zusätzliche Informationen liefern. Darüber hinaus kann der Benutzer während Messungen der Spannungsqualität gleichzeitig andere Parameter aufzeichnen, wie z.B. Leistung, Energie und Strom-Oberwellen. Zur Sammlung von Spannungsereignissen während der Aufzeichnung müssen die

Optionen Include voltage events (Spannungsereignisse aufzeichnung) im Recorder aktiviert sein. Spannungsereignisse einstellen, s. Abschnitt 3.16.2.



Abbildung 5.15: Voreingestellte EN50160-Recorderkonfiguration

Nach Abschluss der Aufzeichnung wird die Prüfung nach EN 50160 mit der PowerView v2.0-Software *durchgeführt*. Siehe Handbuch PowerView v2.0 oder Details. **Hinweis:** Bei der Aufzeichnung gemäß EN 50160 werden nur Mittelwerte gespeichert.

# 6 Technische Daten

# 6.1 Allgemeine Angaben

Zulässiger Betriebstemperatur- bereich:	-10 °C ÷ +5	0° 0	
Zulässiger Lagertemperatur- bereich:	-20 °C ÷ +7	O° 0	
Max. Feuchte:	95 % RF (0	°C ÷ 40 °C), nicht kondensierend	
Verschmutzungsgrad:	2		
<	Doppelte Is	olierung	
Überspannungskategorie: Schutzklasse:	CAT IV / 60 IP 42	0 V; CAT III / 1000 V	
Abmessungen:	(220 x 115 x	x 90) mm	
Gewicht (ohne Zubehör):	0,65 kg		
Display:	Grafische F grundbeleue	Flüssigkristallanzeige (LCD) mit Hinter- chtung, 320 x 200 Punkte.	
Speicher:	8 MByte Fla	ash-Speicher	
Batterien:	6 x 1,2 V NiMh wiederaufladbare Batterien Tvp HR 6 (AA)		
	Ausreichen	d für eine Betriebsdauer von bis zur	
	15 Stunden	*	
Externes Gleichstromnetzteil:	12 V, 1,2 A	min.	
Maximale Leistungsaufnahme:	2: 150 mA – ohne Batterien		
-	1 A – beim	Laden von Batterien	
Batterieladezeit:	4 Stunden *		
Kommunikation:	USB 1.0	Standard USB-Anschluss, Typ B 2400 Baud ÷ 921600 Baud	
	RS232	8-poliger PS/2 – Anschluss 2400 Baud ÷ 115200 Baud	

* Ladezeit und Betriebsstundenzahl für Batterien mit einer Nennkapazität von 2500 mAh

# 6.2 Messungen

**Hinweis:** Um die in diesem Abschnitt angegebene Auflösung und Genauigkeit zu erhalten, müssen die Messdaten mithilfe von PowerView v2.0 (Wellenform-Momentanwert oder Leitungsansicht) beobachtet werden. Die Auflösung der Grafikanzeige von PowerQ4 / PowerQ4 Plus ist aufgrund des zur Verfügung stehenden Raumes begrenzt. Verbesserte Sichtbarkeit der Messungen erhält man am PC mit PowerView (größere Schriften und mehr Raum zwischen den Messungen).

#### 6.2.1 Allgemeine Beschreibung

Max. Eingangsspannung (Phase – Neutral):	1000 V _{RMS}
Max. Eingangsspannung (Phase – Phase):	1730 V _{RMS}
Eingangsimpedanz Phase - Neutral:	6 ΜΩ
Eingangsimpedanz Phase – Phase:	6 ΜΩ
AD-Wandler	16 Bit 8 Kanäle,
	Simultanabtastung

Referenztemperatur	23 °C ± 2 °C
Temperatureinfluss	60 ppm/°C

**HINWEIS:** Das Instrument hat 3 Spannungsbereiche. Der Messbereich ist entsprechend der Nennspannung des Netzes anhand der folgenden Tabelle auszuwählen.

Nominale Phasenspannung: U _{Nom}	Empfohlener Spannungsmessbereich
50 V ÷ 110 V	Spannungsbereich 1: 50 V ÷ 110 V (L-N)
110 V ÷ 240 V	Spannungsbereich 2: 110 V ÷ 240 V (L-N)
240 V ÷ 1000 V	Spannungsbereich 3: 240 V ÷ 1000 V (L-N)

Nominale Spannung Phase zu Phase:	: Empfohlener Spannungsmessbereich	
U _{Nom}		
86 V ÷ 190 V	Spannungsbereich 1: 86 V ÷ 190 V (L-L)	
190 V ÷ 415 V	Spannungsbereich 2: 190 V ÷ 415 V (L-L)	
415 V ÷ 1730 V	Spannungsbereich 3: 240 V ÷ 1730 V (L-L)	

**HINWEIS:** Stellen Sie sicher, dass alle Spannungsklemmen während der Mess- und Protokollierungsperiode angeschlossen sind. Nicht verbundene Spannungsklemmen führen zu elektromagnetischen Störungen (EMI) und können falsche Ereignisse auslösen. Es wird empfohlen, sie mit dem Neutralleitereingang des Instruments zu verbinden.

#### 6.2.2 Phasenspannungen

#### U_{pRms}, p: [1, 2, 3, 4, N]

Messbereich	Auflösung	Genauigke it	Crest-Faktor
Bereich 1: 20,00 V _{RMS} ÷ 150,00 V _{RMS}	10 mV	1020/	
Bereich 2: 50,0 V _{RMS} ÷ 360,0 V _{RMS}	$\pm 0,2\%$		Min.1,5
Bereich 3: 200,0 V _{RMS} ÷ 1500,0 V _{RMS}	100 1110	URMS	

#### U_{pRms(1/2)} p: [1, 2, 3, 4, N], AC+DC

Messbereich	Auflösung	Genauigke	Crest-Faktor
		it	
Bereich 1: 20,00 V _{RMS} ÷ 150,00 V _{RMS}		+05%	
Bereich 2: 50,00 V _{RMS} ÷ 360,00 V _{RMS}	10 mV	± 0,5 % ·	Min. 1,5
Bereich 3: 200,00 V _{RMS} ÷ 1500,00 V _{RMS}		URMS	

#### *Cf*_{Up}, p: [1, 2, 3, 4, N], AC+DC

Messbereich	Auflösung	Genauigkeit
1,00 ÷ 2,50	0,01	$\pm 5 \% \cdot Cf_U$

#### U_{pPk}: p: [1, 2, 3, 4, N], AC+DC

Messbereich	Auflösung	Genauigkeit
Bereich 1: 20,0 V ÷ 255,0 Vpk	100 mV	± 0,5 % · U _{Pk}
Bereich 2: 50,0 V ÷ 510,0 Vpk		<b>± 0,5 %</b> · U _{Pk}
Bereich 3: 200,0 V ÷ 2250,0 Vpk		<b>± 0,5 %</b> · U _{Pk}

#### 6.2.3 Leiterspannungen

#### UpgRms, pg: [12, 23, 31], AC+DC

Messbereich	Auflösung	Genauigkeit	Crest-Faktor
Bereich 1: 20,0 V _{RMS} ÷ 260,0 V _{RMS}		+ 0.25 %	
Bereich 2: 47,0 V _{RMS} ÷ 622,0 V _{RMS}	100 mV	± 0,25 %	Min. 1,5
Bereich 3: 346,0 V _{RMS} ÷ 2600,0 V _{RMS}		URMS	

#### U_{pRms(1/2)} pg: [12, 23, 31], AC+DC

Messbereich	Auflösung	Genauigkeit	Crest-Faktor
Bereich 1: 20,00 V _{RMS} ÷ 260,00 V _{RMS}		+05%	
Bereich 2: 47,00 V _{RMS} ÷ 622,00 V _{RMS}	10 mV		Min. 1,5
Bereich 3: 346,00 V _{RMS} ÷ 2600,00 V _{RMS}			

#### *Cf*_{Upg}, pg: [12, 23, 31], AC+DC

Messbereich	Auflösung	Genauigkeit
1,00 ÷ 2,50	0,01	$\pm 5 \% \cdot Cf_U$

#### *U_{pgPk}*, pg: [12, 23, 31], AC+DC

Messbereich	Auflösung	Genauigkeit
Bereich 1: 20,0 V ÷ 442,0 Vpk		
Bereich 2: 47,0 V ÷ 884,0 Vpk	100 mV	<b>± 0,5 %</b> · U _{Pk}
Bereich 3: 346,0 V ÷ 3700,0 Vpk		

#### 6.2.4 Strom

Eingangsimpedanz: 100 kΩ

#### I_{pRms}, p: [1, 2, 3, 4, N], AC+DC

Messbereich	Auflösung	Genauigkeit	Crest-Faktor
Bereich 1: 50,0 mV _{RMS} ÷ 200,0 mV _{RMS}	100\/	±0,25 % U _{RMS}	Min. 1,5
Bereich 2: 50,0 mV _{RMS} ÷ 2.0000 V _{RMS}	ΙΟΟμν	±0,25 % U _{RMS}	
II PMS Spannung am Stromoingan	'n		

U_{RMS} – RMS-Spannung am Stromeingang

#### Scheitelwert *I*_{*pPk*}, *I*_{*NPk*}, *p*: [1, 2, 3, 4, N], AC+DC

Messbereich	Auflösung	Genauigkeit
Bereich 1: 50,0 mV ÷ 280,0 mV _{Pk}	100\/	± 2 % · U _{Pk}
Bereich 2: 50,0 mV ÷ 3,0000 V _{Pk}	ΙΟΟμν	± 2 % · U _{Pk}
	·	

 $U_{Pk}$  – Scheitelwert der Spannung am Stromeingang

#### *Ip*¹/₂ *Rms*, *p*: [1, 2, 3, 4, *N*], *AC+DC*

Messbereich	Auflösung	Genauigkeit	Crest-Faktor
Bereich 1: 20,0 mV _{RMS} ÷ 200,0 mV _{RMS}	100\/	± 1 % U _{RMS}	Min 15
Bereich 2: 20,0 mV _{RMS} ÷ 2,0000 V _{RMS}	100 μν	± 1 % U _{RMS}	1,5
		•	

U_{RMS} – RMS (¹/₂)-Spannung am Stromeingang

#### Crest-Faktor Cf_{Ip} p: [1, 2, 3, 4, N], AC+DC

Messbereich	Auflösung	Genauigkeit
1,00 ÷ 10,00	0,01	± 5 % · Cf _l

#### Genauigkeit bei der Messung mit Stromzangen

Messzubehör		Messbereich	Gesamtgenauigkeit
			Strommessung
	1000 A	100 A ÷ 1200 A	±1,4 % · I _{RMS}
A 1291	100 A	10 A ÷ 175 A	±0,4 % · I _{RMS}
A 1201	5 A	0,5 A ÷ 10 A	±0,4 % · I _{RMS}
	0,5 A	50 mA ÷ 1 A	±0,4 % · I _{RMS}
	3000 A	300 A ÷ 6000 A	±1,5 % · I _{RMS}
A 1227	300 A	30 A ÷ 600 A	±1,5 % · I _{RMS}
	30 A	3 A ÷ 60 A	±1,5 % · I _{RMS}
A 1033	1000 A	20 A ÷ 1000 A	±1,3 % · I _{RMS}
A 1122	5 A	100 mA ÷ 5 A	±1,3 % · I _{RMS}

Hinweis: Gesamtgenauigkeit wird wie folgt berechnet:

SystemUncertainty =  $1,15 \cdot \sqrt{PowerQ4Uncertainty^2 + ClampUncertainty^2}$ 

#### 6.2.5 Frequenz

Messbereich	Auflösung	Genauigkeit
10,000 Hz ÷ 70,000 Hz	2 mHz	± 10 mHz

#### 6.2.6 Flickermessung

Flicker-	Messbereich	Auflösung	Genauigkeit*
Туре (Тур)			
P _{lt1min}	0,400 ÷ 4,000		$\pm 5 \% \cdot P_{lt1min}$
P _{st}	0,400 ÷ 4,000	0,001	± 5 % · P _{st}
Plt	0,400 ÷ 4,000		± 5 % · P _{lt}

* nur garantiert im Frequenzbereich von 49 ÷ 51 Hz

#### 6.2.7 Leistung

		Messbereich (W, VAr, VA)	Auflösung	Genauigkeit
Wirkleistung P*	ohne Stromzangen	0,000 k ÷ 999,9 M	4 Digits	±0,5 % · P
	Mit A 1227 Flex Clamps 3000A	0,000 k ÷ 999,9 k		±1,8 % · P
	Mit A 1281 Mehrbereichs- Stromzangen 100 A	0,000 k ÷ 999,9 k		±0,8 % · P
	Mit A 1033 1000 A	000,0 k ÷ 999,9 k		±1,6 % · P

Blindleistung Q**	ohne Stromzangen	0,000 k ÷ 999,9 M		±0,5 % · Q
	Mit A 1227 Flex Clamps	0,000 k ÷ 999,9 k	4 Digits	±1,8 % · Q
	Mit A 1281 Mehrbereichs- Stromzangen 100 A	0,000 k ÷ 999,9 k		±0,8 % · Q
	Mit A 1033 1000 A	000,0 k ÷ 999,9 k		±1,6 % · Q
Scheinleistung S***	ohne Stromzangen	0,000 k ÷ 999,9 M	4 Digits	±0,5 % · S
	Mit A 1227 Flex Clamps	0,000 k ÷ 999,9 k		±1,8 % · S
	Mit A 1281 Mehrbereichs- Stromzangen 100 A	0,000 k ÷ 999,9 k		±0,8 % · S
	Mit A 1033 1000 A	000,0 k ÷ 999,9 k		±1,6 % · S

*Genauigkeitswerte gelten nur für cos  $\varphi \ge 0,80$ ,  $I \ge 10 \% I_{Nom}$  und  $U \ge 80 \% U_{Nom}$ **Genauigkeitswerte gelten nur für sin  $\varphi \ge 0,50$ ,  $I \ge 10 \% I_{Nom}$  und  $U \ge 80 \% U_{Nom}$ ***Genauigkeitswerte gelten nur für cos  $\varphi \ge 0,50$ ,  $I \ge 10 \% I_{Nom}$  und  $U \ge 80 \% U_{Nom}$ 

### 6.2.8 Leistungsfaktor (Pf)

Messbereich	Auflösung	Genauigkeit
-1,00 ÷ 1,00	0,01	± 0,02

#### 6.2.9 Verschiebungsfaktor (Cos $\phi$ )

Messbereich	Auflösung	Genauigkeit
0,00 ÷ 1,00	0,01	± 0,02

#### 6.2.10 Energie

		Messbereich (kWh, kVArh, kVAh)	Auflösung	Genauigkeit
5	ohne Stromzangen	000.000.000,001 ÷ 999.999.999,999		±0,5 % · eP
Virken	Mit A 1227 Flex Clamps	000.000.000,001 ÷ 999.999.999,999	12 Digits	±1,8 % · eP
nergie eP*	Mit A 1281 Mehrbereichs- Stromzangen 100	000.000.000,001 ÷ 999.999.999,999		±0,8 % · eP
	Mit A 1033 1000 A	000.000.000,001 ÷ 999.999.999,999		±1,6 % · eP
B	ohne Stromzangen	000.000.000,001 ÷ 999.999.999,999	12 Digits	±0,5 % · eQ
inden eQ*	Mit A 1227 Flex Clamps	000.000.000,001 ÷ 999.999.999,999		±1,8 % · eQ
ergie .*	Mit A 1281 Mehrbereichs- Stromzangen 100	000.000.000,001 ÷ 999.999.999,999		±0,8 % · eP

	Mit A 1033 1000 A	000.000.000,001 ÷ 999.999.999,999		±1,6 % · eQ
Scheinenergie eS***	ohne Stromzangen	000.000.000,001 ÷ 999.999.999,999	12 Digits	±0,5 % · eS
	Mit A 1227 Flex Clamps	000.000.000,001 ÷ 999.999.999,999		±1,8 % · eS
	Mit A 1281 Mehrbereichs- Stromzangen 100	000.000.000,001 ÷ 999.999.999,999		±0,8 % · eP
	Mit A 1033 1000 A	000.000.000,001 ÷ 999.999.999,999		±1,6 % · eS

*Genauigkeitswerte gelten nur für cos  $\varphi \ge 0,80$ , I  $\ge 10$  % I_{Nom} und U  $\ge 80$  % U_{Nom}

**Genauigkeitswerte gelten nur für sin  $\varphi \ge 0,50$ ,  $I \ge 10$  %  $I_{Nom}$  und  $U \ge 80$  %  $U_{Nom}$ 

***Genauigkeitswerte gelten nur für cos  $\varphi \ge 0,50$ ,  $I \ge 10$  %  $I_{Nom}$  und  $U \ge 80$  %  $U_{Nom}$ 

#### 6.2.11 Spannungsoberwellen und Gesamtklirrfaktor (THD)

Messbereich	Auflösung	Genauigkeit
$Uh_N < 3 \% U_{Nom}$	10 mV	± 0,15 % · U _{Nom}
$3 \% U_{Nom} < Uh_N < 20 \% U_{Nom}$	10 mV	$\pm 5 \% \cdot Uh_N$

U_{Nom}: Nennspannung (RMS)

Uh_N: Gemessene Oberwellenspannung

N: Oberwelle 1. ÷ 50. Ordnung

Messbereich	Auflösung	Genauigkeit
0 % U _{Nom} < THD _U < 20 % U _{Nom}	0,1 %	± 0,3
LL · Nonnononnung (DMS)		·

U_{Nom}: Nennspannung (RMS)

#### 6.2.12 Stromoberwellen und Gesamtklirrfaktor (THD)

Messbereich	Auflösung	Genauigkeit
Ih _n < 10 % I _{Nom}	10 mV	± 0,15 % · I _{Nom}
10 % $I_{Nom} < Ih_n < 100$ %	10 mV	$\pm 5 \% \cdot Ih_N$

I_{Nom}: Nennstrom (RMS)

Ih_N: Gemessener Oberwellenstrom

N: Oberwelle 1. ÷ 50. Ordnung

Messbereich	Auflösung	Genauigkeit
0 % I _{Nom} < THD _I < 100 % I _{Nom}	0,1 %	± 0,6
100 % I _{Nom} < THD _I < 200 % I _{Nom}	0,1 %	± 1,5
		•

I_{Nom}: Nennstrom (RMS)

#### 6.2.13 Interharmonische Spannungsoberwellen¹⁴

Messbereich	Auflösung	Genauigkeit
$Uih_N$ < 3 % U _{Nom}	10 mV	$\pm$ 0,15 % $\cdot$ U _{Nom}
$3 \% U_{Nom} < Uih_N < 20 \% U_{Nom}$	10 mV	$\pm 5 \% \cdot \text{Uih}_{N}$

¹⁴ nur PowerQ4 Plus

#### U_{Nom}: Nennspannung (RMS)

Uih_N: Gemessene Oberwellenspannung

N: Interharmonische Oberwelle 1. ÷ 50. Ordnung

#### 6.2.14 Interharmonische Stromoberwellen¹⁵

Messbereich	Auflösung	Genauigkeit
$Ih_n < 10 \% I_{Nom}$	10 mV	± 0,15 % · I _{Nom}
10 % $I_{Nom} < Ih_n < 100$ %	10 mV	$\pm 5 \% \cdot \text{Iih}_{N}$

I_{Nom}: Nennstrom (RMS)

Iih_N: Gemessene interharmonische Stromoberwellen

N: Interharmonische Oberwelle 1. ÷ 50. Ordnung

#### 6.2.15 Netzsignale¹⁶

Messbereich	Auflösung	Genauigkeit
1 % U _{Nom} < U _{Sig} < 3 % U _{Nom}	10 mV	± 0,15 % · U _{Nom}
$3 \% U_{Nom} < U_{Sig} < 20 \% U_{Nom}$	10 mV	$\pm 5 \% \cdot U_{Sig}$

U_{Nom}: Nennstrom (RMS)

U_{Sig}: Gemessene Signalspannung

#### 6.2.16 Asymmetrie

	Asymmetrie-Messbereich	Auflösung	Genauigkeit
u ⁻	0,5 % ÷ 5,0 %	0,1 %	± 0,15 % · u ⁻⁽⁰⁾
i⁻ i ⁰	0,0 % ÷ 17 %	0,1 %	± 1 % · i ⁻⁽⁰⁾

#### 6.2.17 Zeit- und Dauer-Genauigkeit

#### Ungenauigkeit der Echtzeituhr (RTC)

Betriebsbereich	Genauigkeit	
-20 °C ÷ 70 °C	± 3,5 ppm	0,3 s/Tag
0 °C ÷ 40 °C	± 2,0 ppm	0,17 s/Tag

#### Ereignisdauer- und Recorder-Zeitstempel-Ungenauigkeit

	Messbereich	Auflösung	Fehler
Ereignisdauer	30 ms ÷ 7 Tage	1 ms	$\pm$ 1 Zyklus

#### 6.2.18 Temperatur

Messbereich	Auflösung	Genauigkeit
-10,0 °C ÷ 85,0 °C	0.1.00	± 0,5 °C
-20,0 °C ÷ -10,0 °C und 85,0 °C ÷ 125,0 °C	0,1 C	± 2,0 °C

¹⁵ nur PowerQ4 Plus

¹⁶ nur PowerQ4 Plus

# 6.3 Recorder

# 6.3.1 Allgemeiner Recorder

Abtastung	5 Ablesewerte pro Sekunde, durchgehendes Abtasten pro Kanal. Alle Kanäle werden gleichzeitig abgetastet. Abtastfrequenz wird durchgehend mit der Netzfrequenz synchronisiert.					
Aufzeichnungs- zeit	Von 30 M mit Anzeig	linuten mit geauflösun	Anzeigeauf Ig von 1 Stu	ösung von nde.	1 Sekund	e bis 99 Tage
Aufzeichnungs- art	Linear – Zirkular übersteige mit den ne	<b>Linear</b> – Beginnt und endet laut Benutzereinstellungen. <b>Zirkular</b> – wenn die Aufzeichnungen, den freien Speicher übersteigen, werden die ältesten Daten der aktuellen Aufzeichnung mit den neuesten überschrieben				
Aufzeichnungs- menge	1 ÷ 524 Paramete gespeiche	1 ÷ 524 Parameter können aufgezeichnet werden. Für jeden Parameter werden Minimal-, Maximaldurchschnitts- und Mittelwert gespeichert				
	Bei Stan Aufzeichn	Bei Standardeinstellungen des Recorders (179 Signale zur Aufzeichnung ausgewählt)				
Auflösung	1 s	3 s	5 s	10 s	1 Min.	2 Min.
Duration (Dauer)	1 h	4 h	7 h	15 h	3 Tage	7 Tage
Auflösung	5 Min.	10 Min.	15 Min.	30 Min.	60 Min.	
Duration (Dauer)	18 Tage	37 Tage	56 Tage	99 Tage	99 Tage	
Ereignisse	Bis zu 1	000 Spar	nungsereig	nis-Signatu	ıren könn	ien in einem
-	Datensatz	z gespeich	ert werden.	-		
Alarme	Bis zu gespeiche	1000 Alar ert werden.	m-Signature	en können	in eine	m Datensatz
Trigger	Startzeit o	oder manue	ell			

# 6.3.2 Wellenform-Recorder¹⁷

Abtastung	102,4 Ablesewerte pro Sekunde, durchgehendes Abtasten pro Kanal. Alle Kanäle werden gleichzeitig abgetastet. Abtastfrequenz wird durchgehend mit der Netzfrequenz synchronisiert.			
Aufzeichnungs- zeit	Von 10 Zyklus	sperioden bis 37	70 Zyklusperioder	1
Aufzeichnungs- art	<b>Einzelspeicherung</b> – Wellenform-Aufzeichnung endet nach erstem Auslöser; <b>Laufende Speicherung</b> – Aufeinanderfolgende Wellenform- Aufzeichnungen bis Benutzer die Messung stoppt oder der Speicherplatz des Instruments belegt ist			
Aufzeichnungs-	Wellenformat	otasten von: U ₁ ,	U ₂ , U ₃ , U _N , (U ₁₂ , U	₂₃ , U ₃₁ ), I ₁ , I ₂ , I ₃ , I _N
menge				
	Bei 50 Hz Netzfrequenz			
Anzahl Signale	1	2	4	8
Duration (Dauer)	75 s	38 s	19 s	9 s
Auslöser:	Spannungsereignis, Alarme, in Alarmtabelle definiert oder manuell			

¹⁷ nur PowerQ4 Plus

## 6.3.3 Recorder für Einschaltspitze / schnell¹⁸

Abtastung	1 Ablesewert pro Halbzyklus ÷ 1 Ablesewert pro 10 Zyklen (bei 50 Hz Netzfrequenz: 5 bis 100 Ablesewerte pro Sekunde) Alle Kanäle werden gleichzeitig abgetastet. Abtastfrequenz wird durchgehend mit der Netzfrequenz synchronisiert.
Aufzeichnungs- zeit	1 s ÷ 3 Min
Aufzeichnungs- art	Einzelspeicherung – Einschaltspitzen-Aufzeichnung endet nach erstem Auslöser;
	Laufende Speicherung – aufeinanderfolgende Einschaltspitzen-
	Aufzeichnung bis Benutzer die Messung stoppt oder der
	Speicherplatz des Instruments belegt ist.
Aufzeichnungs-	$U_{1Rms(1/2)}, U_{2Rms(1/2)}, U_{3Rms(1/2)}, U_{NRms(1/2)}, (U_{12Rms(1/2)}, U_{23Rms(1/2)}, )$
menge	$U_{31Rms(1/2)}$ , $I_{1/_{2}Rms}$ , $I_{2/_{2}Rms}$ , $I_{3/_{2}Rms}$ , $I_{N/_{2}Rms}$
	Bei 50 Hz Netzfrequenz
Anzahl Signale	1 2 4 8
Duration (Dauer)	686 s 514 s 343 s 205 s
Trigger	Prozentsatz der Nennspannung oder des Strombereiches (Anstieg, Abfall oder beide Kanten)

#### 6.3.4 Momentanwert einer Wellenform

Abtastung	102,4 Abtastungen pro Zyklus. Alle Kanäle werden gleichzeitig
	abgetastet.
Aufzeichnungs-	10er Zyklus-Periode
zeit	
Aufzeichnungs-	Wellenformabtasten von: $U_1$ , $U_2$ , $U_3$ , $U_N$ , $(U_{12}, U_{23}, U_{31})$ , $I_1$ , $I_2$ , $I_3$ , $I_N$
menge	Signaturen werden lauf Abtastungen im Anschluss berechnet.
Auslöser:	manuell

## 6.3.5 Recorder für Transiente¹⁹

Abtastung	1024 Abtastungen pro Zyklus. Alle Kanäle werden gleichzeitig
	abgetastet.
Aufzeichnungs-	Periode mit 1 ÷ 47 Zyklen
zeit	
Aufzeichnungs-	Wellenformabtasten von: $U_1$ , $U_2$ , $U_3$ , $U_N$ , $(U_{12}, U_{23}, U_{31})$ , $I_1$ , $I_2$ , $I_3$ , $I_N$
menge	für alle Kanäle berechnet: U _{RMS} , I _{RMS} , THD _U , THD _I
Auslöser:	Manuell, dV - Details siehe Abschnitt 5.1.17

# 6.4 Erfüllte Normen

## 6.4.1 Das Gerät erfüllt die Norm IEC 61557-12

#### Allgemeine und wichtige Funktionsmerkmale

Netzqualitätsbewertungsfunktion -S

¹⁸ nur PowerQ4 Plus ¹⁹ nur PowerQ4 Plus

	90	Indirekte	Strommessung	und	direkte
Klassifiziorung nach 4 3	30	Spannung	Ismessung		
	66	Indirekte	Strommessung	und	indirekte
	33	Spannung	Ismessung		
Temperatur	K50				
Feuchte + Höhe ü. NN	Star	dard			

#### Messfunktionalität

Funktionssymbole	Klasse nach Maßgabe v. IEC 61557-12	Messbereich	Messverfahren IEC 61000-4-30 Klasse
Р	1	5 % ÷ 200% I _{Nom} ⁽¹⁾	
Q	1	5 % ÷ 200% I _{Nom} ⁽¹⁾	
S	1	5 % ÷ 200% I _{Nom} ⁽¹⁾	
eP	1	5 % ÷ 200% I _{Nom} ⁽¹⁾	
eQ	2	5 % ÷ 200% I _{Nom} ⁽¹⁾	
eS	1	5 % ÷ 200% I _{Nom} ⁽¹⁾	
PF	0,5	- 1 ÷ 1	
f	0,02	10 Hz ÷ 70 Hz	S
I, I _{Nom}	0,5	5 % I _{Nom} ÷ 200 % I _{Nom}	S
U	0,2	20 V ÷ 1000 V	S
P _{st} ,P _{lt}	5	0,4 ÷ 4	S
U _{dip,} U _{swl}	1	5 V ÷ 1500 V	S
U _{int}	0,5	0 V ÷ 100 V	A
u ⁻ , u ⁰	0,2	0,5 % ÷ 17 %	A
Uh _n	1	0 % ÷ 20 % U _{Nom}	S
THDu	1	0 % ÷ 20 % U _{Nom}	S
lh _n	1	0 % ÷ 100 % I _{Nom}	A
THDi	2	0 % ÷ 100 % I _{Nom}	A

(1) - Messbereich ist vom Stromsensor abhängig. Jedoch beträgt der Messbereich gemäß IEC 61557-12, wenn für den Stromsensor  $I_{Nom}$  definiert als  $I_{Nom} = k \cdot A/V$  gilt 2 %  $I_{Nom} \div 200$  %  $I_{Nom}$ .

# 6.4.2 Erfüllung der Norm IEC 61000-4-30

IEC 61000-4-30 Abschnitt und Parameter	PowerQ4 Plus Parameter	Klasse	Messverfahren - IEC 61000-4- 30 Abschnitt	Ungenauigkeit	Mess- bereich ⁽¹⁾	Einfluss Größenordnung ⁽²⁾	Aggregations- verfahren ⁽³⁾
5.1 Frequenz	freq	S	5.1.1	± 10 mHz	10 Hz ÷ 70 Hz	40 Hz ÷ 70 Hz	Arithm. Mittel
5.2 Größenordnung des Eintrags	U _{Rms}	S	5.2.1	± 0,5 % U _{Nom}	10 % ÷ 150 % U _{Nom}	10 % ÷ 150 % U _{Nom}	RMS
5.3 Flicker	P _{st}	S	5.3.1	± 5 % ⁽⁴⁾	0,4 ÷ 4,0	0 + 10	IEC 61000-4- 15
5,4 Dips und Swells	U _{Dip,} U _{Swell} Dauer	S	5.4.1	± 0,5 % ± 1 Zyklus	> 10 % U _{Nom} 1,5 Zyklus ÷ 7 Tage	I	I
5,5 Unterbrechungen	U _{Int} Dauer	S	5.4.1	± 0,5 % ± 1 Zyklus	< 150 % U _{Nom} 1,5 Zyklus ÷ 7 Tage	H	I
5,7 Asymmetrie	u_u ^o	A	5.7.1	± 0,15 %	0,5 % ÷ 5 %	0 % ÷ 5 %	RMS
5,8 Spannungsoberwellen	Uh _N	S	5.8.1	IEC 61000-4-7 Klasse II	0 % ÷ 20 % U _{Nom}	0 % ÷ 20 % U _{Nom}	RMS
5.9 Interharmonische Spannungsoberwellen	Uih _N	S	5.9.1	IEC 61000-4-7 Klasse II	0 % ÷ 20 % U _{Nom}	0 % ÷ 20 % U _{Nom}	RMS
5.10 Netzsignalspannung	U _{Sig}	S	5.10.2	± 5 % U _{Sig}	3 % ÷ 15 % U _{Nom}	0 % ÷ 20 % U _{Nom}	RMS
A.6.3 Stromgröße	I _{Rms}	S	A.6.3.1	± 0,5 %	2 % ÷ 200 % I _{Nom}	2 % ÷ 200 % I _{Nom}	RMS
A.6.4 Einschaltspitzenstrom	1½Rms	S	A.6.4.1	±1%	2 % ÷ 200 % I _{Nom}	I	I
A.6.5 Oberwellenströme	lh _n	A	A.6.5	IEC 61000-4-7 Klasse II	0 % ÷ 200 % I _{Nom}	0 % ÷ 200 % I _{Nom}	RMS
A.6.6 Interharmonische Oberwellenströme	lih _n	A	A.6.6	IEC 61000-4-7 Klasse II	0 % ÷ 200 % I _{Nom}	0 % ÷ 200 % I _{Nom}	RMS

Das Instrument erfüllt die Anforderungen hinsichtlich der Unsicherheit von Signalen im Messbereich.
 Das Instrument toleriert Signale im Einflussgrößenbereich ohne Vergrößerung der Unsicherheit anderer Parameter bei der Messung und ohne Beschädigung des

(3) Berechnung des quadratischen Mittels entsprechend IEC 61000-4-30 Abschnitte 4.4 und 4.5, Berechnung des arithmetischen Mittels entsprechend Abschnitt 5.1.14 in diesem Handbuch.

(4) nur garantiert im Frequenzbereich von 49 ÷ 51 Hz

# 7 Wartung

# 7.1 Einsetzen der Batterien in das Instrument

- 1. Sicherstellen, dass der Netzadapter / das Ladegerät und Messleitungen abgezogen sind und das Gerät ausgeschaltet ist.
- 2. Batterien wie in der folgenden Abbildung einlegen (Batterien korrekt gepolt einlegen, sonst funktioniert das Gerät nicht, und die Batterien könnten entladen oder beschädigt werden).



Abbildung 7.1: Einsetzen der Batterien

3. Display-Seite des Geräts so nach unten drehen, dass das Batteriefach nach oben zeigt und (*s. folgende Abbildung*) und die Abdeckung auf die Batterien legen.



Abbildung 7.2: Schließen des Batteriefachs

4. Instrumentenabdeckung verschrauben.

Wenn das Instrument über einen längeren Zeitraum nicht benutzt wird, alle Batterien aus dem Batteriefach nehmen. Die mitgelieferten Batterien können das Gerät ca. 15 Stunden mit Strom versorgen.

# **M** Warnungen!

• Wenn Batteriezellen ausgewechselt werden müssen, Gerät vor Öffnung der Batteriefachabdeckung ausschalten.

- Im Inneren des Geräts bestehen gefährliche Spannungen. Vor Abnahme der Batteriefachabdeckung alle Prüfleitungen abklemmen und das Stromversorgungskabel abziehen.
- Nur das vom Hersteller oder Händler des Prüfgeräts gelieferte Netzteil / Ladegerät verwenden, um mögliche Brände oder Stromschlag zu vermeiden.
- Es werden wiederaufladbare NiMh-Batterien des Typs HR 6 (Größe AA) empfohlen. Ladezeit und Betriebsstundezahl entsprechen der von Batterien mit einer Nennkapazität von 2500 mAh.
- Explosionsgefahr: Keine Standardbatterien verwenden, wenn das Instrument am Netzteil bzw. das Batterieladegerät angeschlossen ist, da die Batterien explodieren können!
- Keinesfalls verschiedenartige Batterietypen und -marken bzw. Batterien unterschiedlichen Alters oder Ladezustands gleichzeitig einsetzen.
- Beim erstmaligen Laden der Batterien sicherstellen, die Batterien mindestens 24 Stunden lang laden, bevor das Instrument eingeschaltet wird.

# 7.2 Batterien

Das Instrument enthält wiederaufladbare NiMh-Batterien. Die Batterien müssen durch Batterien des gleichen Typs ersetzt werden. Die Batterietypangabe finden Sie auf dem Etikett im Batteriefach oder in diesem Handbuch.

Wenn die Notwendigkeit des Batterieaustauschs besteht, müssen alle sechs Batterien auf einmal ausgewechselt werden. Stellen Sie sicher, dass die Batterien mit korrekter Polarität eingelegt werden; falsche Polarität kann zu Schäden an den Batterien und / oder am Instrument führen.

# Vorkehrungen für das Aufladen von neuen Batterien oder von Batterien, die längere Zeit nicht benutzt wurden

Während des Ladens neuer Batterien oder von Batterien, die über eine längere Zeit (mehr als 3 Monate) nicht benutzt wurden, können unvorhersehbare chemische Prozesse auftreten. NiMH- und NiCd-Batterien sind auf unterschiedliche Weise betroffen (man nennt den Effekt auch Memory-Effekt). Infolgedessen kann die Betriebszeit des Instruments bei den ersten Lade- / Entlade-Zyklen wesentlich verkürzt sein.

Daher wird Folgendes empfohlen:

- Vollständiges Laden der Batterien
- Vollständiges Entladen der Batterien (kann durch normales Arbeiten mit dem Instrument geschehen).
- Mindestens zweimalige Wiederholung des Lade- / Entlade-Zyklus' (vier Zyklen werden empfohlen).

Bei der Verwendung externer, intelligenter Batterieladegeräte wird automatisch ein Entlade- / Lade-Zyklus durchgeführt.

Nach Durchführung dieses Verfahrens ist die normale Batteriekapazität wiederhergestellt. Die Betriebszeit des Instruments entspricht nun den Angaben in den technischen Daten.

#### Hinweise

Das Ladegerät im Instrument ist ein so genanntes Zellenpack-Ladegerät. Das bedeutet, dass die Batterien während des Ladens in Reihe geschaltet sind. Daher müssen alle

Batterien in ähnlichem Zustand vorliegen (ähnlicher Ladezustand, gleicher Typ und gleiches Alter).

Eine einzige Batterie im schlechten Zustand (oder eine von einem anderen Typ) kann eine untaugliche Ladung des gesamten Batteriepacks bewirken (Erwärmung des Batteriepacks, wesentlich verkürzte Betriebszeit).

Wenn nach Durchführung mehrerer Lade- / Entladezyklen keine Verbesserung erreicht wird, sollte der Zustand der einzelnen Batterien bestimmt werden (durch Vergleich der Batteriespannungen, deren Überprüfung in einem Zellenladegerät etc.). Es ist sehr wahrscheinlich, dass sich nur einige der Batterien verschlechtert haben.

Die oben beschriebenen Effekte dürfen nicht mit der normalen Minderung der Batteriekapazität über die Zeit verwechselt werden. Alle aufladbaren Batterien verlieren durch wiederholte Ladung / Entladung einiges an ihrer Kapazität. Die tatsächliche Kapazitätsverminderung als Funktion der Ladezyklen hängt vom Batterietyp ab und wird in den technischen Daten des Batterieherstellers angegeben.

# 7.3 Betrachtungen zur Stromversorgung

# **M** Warnungen

- Nur das vom Hersteller mitgelieferter Ladegerät verwenden.
- Das Netzteil NICHT anschließen, wenn nicht aufladbare Standardbatterien eingelegt sind!

Bei Verwendung des vom Hersteller gelieferten Netzteils / Ladegeräts ist das Instrument sofort nach dem Einschalten betriebsbereit. Gleichzeitig werden die Batterien geladen. Die Nennladezeit beträgt 4 Stunden.

Die Batterien werden immer geladen, wenn das Netzteil / Ladegerät am Instrument angeschlossen ist. Ein eingebauter Schutzstromkreis steuert den Ladevorgang und gewährleistet die maximale Lebensdauer der Batterien.

Bleibt das Gerät länger als 2 Minuten ohne Batterien und Ladegerät werden die Uhrzeitund Datumseinstellung zurückgesetzt.

# 7.4 Reinigung

Zur Reinigung der Geräteoberfläche ist ein weiches Tuch zu benutzen, das leicht mit Seifenwasser oder Alkohol angefeuchtet ist. Das Gerät ist danach vor der Benutzung vollständig abtrocknen zu lassen.

# \Lambda Warnungen

- Keine auf Basis von Benzin oder Kohlenwasserstoffen verwenden!
- Keine Reinigungsflüssigkeit über das Instrument schütten!

# 7.5 Periodische Kalibrierung

Für korrekte Messungen ist die regelmäßige Kalibrierung des Geräts wichtig. Bei häufiger täglicher Benutzung wird eine Kalibrierung alle sechs Monate empfohlen. Ansonsten reicht eine jährliche Kalibrierung aus.

# 7.6 Service

Für Garantie- und sonstige Reparaturen wenden Sie sich bitte an Ihren Lieferanten.

# 7.7 Fehlerbehebung

Wenn die *Esc*-Taste beim Einschalten des Geräts gedrückt ist, schaltet sich das Gerät nicht ein. Sie müssen die Batterien entnehmen und wieder einlegen. Danach schaltet sich das Gerät wieder normal ein.

#### Herstelladresse:

METREL d.d. Ljubljanska 77, SI-1354 Horjul, Slowenien

Tel: +(386) 1 75 58 200 Fax: +(386) 1 75 49 095 E-Mail: metrel@metrel.de http://www.metrel.si