EurotestXE MI 3102

Eurotest EASI MI 3100

Benutzerhandbuch

Version 1.0, Code-Nr. 20 750 176

PEWA Messtechnik GmbH

Weidenweg 21 58239 Schwerte Telefon: +49 (0) 2304-96109-0 Telefax: +49 (0) 2304-96109-88 eMail: info@pewa.de Homepage: www.pewa.de

Inhalt

1		Vorv	wort	1
2		Sich	erheits- und Bedienungshinweise	2
	2.1	War	nhinweise	2
	2.2	Batte	erien	2
	2.3	Lade	en	3
	2.4	Vork Zeit	cehrungen für die Ladung neuer Batterien oder von Batterien, die lär nicht benutzt wurden	igere 3
	2.5	Anw	endbare Standards	4
3		Bes	chreibung des Instruments	5
	3.1	Fron	it-Bedienfeld	5
	3.2	Anso	chlussfeld	6
	3.3	Rücl	kwand	7
	3.4	Bode	enansicht	8
	3.5	Irag	jen des Instruments	9
	3.6	Auss	stattung und Zubenor des Instruments	9
	3.6	.1	Standardausstattung	9
	3.6	.2	Optionales Zubehör	10
4		Bed	ienung des Instruments	11
	4.1	Bede	eutung der Symbole und Meldungen auf dem Display des Instrumen	its 11
	4.1	.1	Online-Spannungs- und Ausgangsklemmenwächter	11
	4.1	.2	Meldungsfeld - Batteriestatus	12
	4.1	.3	Meldungsfeld - Messwarnhinweise/-meldungen	12
	4.1	.4	Ergebnisfeld	13
	4.1	.5	Andere Meldungen	13
	4.1	.6	Warntöne	14
	4.1	.7	Funktions- und Parameterzeile	14
	4.1	.8	Auswahl der Messfunktion/-Unterfunktion	15
	4.2	Eins	tellung der Messparameter und Grenzwerte	15
	4.3	Hilfe	-Menü	15
	4.4	Eins	tellungsmenü	16
	4.4	.1	Einstellung des Versorgungsnetzes	16
	4.4 Kur	.2 rzsch	Einstellung des Skalierungsfaktors für den unbeeinflussten luss-/Fehlerstrom	17
	4.4	.3	Sprachauswahl	17
	4.4	.4	Auswahl der Schnittstelle (nur MI 3102)	17
	4.4	.5	Wiederherstellung der ursprünglichen Einstellungen	18
	4.5	Eins	tellung des Anzeigekontrasts	19

5		Messungen	
	5.1	Isolationswiderstand	20
	5.2	Isolationsüberwachung in IT Systemen (nur MI 3102)	22
	5.3	Durchgangsprüfung	26
	5.3	.1 Niederohmmessung	26
	5.3	.2 Durchgangsprüfung	26
	5.4	Prüfung von Fehlerstrom-Schutzeinrichtungen (RCD)	31
	5.4	.1 Grenzwert der Berührungsspannung	31
	5.4	.2 Nenn-Auslösedifferenzstrom	31
	5.4	.3 Multiplikator des Nennfehlerstroms	31
	5.4 Prü	.4 Typ der Fehlerstrom-Schutzeinrichtung und Anfangspolarität des ifstroms	31
	5.4	.5 Prüfung selektiver (verzögerter) Fehlerstrom-Schutzeinrichtungen	32
	5.4	.6 Berührungsspannung	32
	5.4	.7 Auslösezeit	34
	5.4	.8 Auslösestrom	36
	5.4	.9 Automatikprüfung	38
	5.5	Fehlerschleifenwiderstand und unbeeinflusster Fehlerstrom	41
	5.5	.1 Fehlerschleifenwiderstand	41
	5.5	.2 Fehlerschleifenwiderstand (Funktion Rs)	43
	5.6	Leitungswiderstand und unbeeinflusster Kurzschlussstrom	45
	5.7	Phasenfolgeprüfung	47
	5.8	Spannung und Frequenz	49 54
	5.9	Fruitung des Schutzleiteranschlusses	51
	5.10	TRMS Strom (nur MI 3102)	55
	5.12	Beleuchtung (nur MI 3102)	57
6	-	Handlung mit Messergebnissen (MI 3102)	59
•	6.1	Speichern von Messergebnissen	59
	6.2	Abrufen von Messergebnissen	60
	6.3	Löschen von Messergebnissen	62
7		Datenübertragung in den PC (nur MI 3102)	65
	7.1	Die EuroLinkXE PC Software	
8		Wartung	67
	8.1	Austausch von Sicherungen	67
	8.2	Reinigung	67
	8.3	Periodische Kalibrierung	67
Ŧ	8.4	Service	68
9		Technische Daten	69

	9.1	Isola	ationswiderstand	69
	9.2	Isola	ationsüberwachung in IT Systemen	69
	9.3	Duro	chgangswiderstand	70
	9.3	.1	Niederohmmessung	70
	9.3	.2	Durchgangsprüfung	70
	9.4	Feh	lerstromschutzprüfung	71
	9.4	.1	Allgemeine Angaben	71
	9.4	.2	Berührungsspannung	71
	9.4	.3	Auslösezeit	72
	9.4	.4	Auslösestrom	72
	9.5	Feh	erschleifenwiderstand und unbeeinflusster Fehlerstrom	73
	9.6	Leitu	ungswiderstand und unbeeinflusster Kurzschlussstrom	74
	9.7	Pha	sendrehung	74
	9.8	Spa	nnung und Frequenz	74
	9.9	Onli	ne-Spannungswächter	74
	9.10	Erdu	ungswiderstand	75
	9.11	TRM	1S Strom	75
	9.12	Bele	euchtung	75
	9.1	2.1	Beleuchtung (Beleuchtungssonde, Typ B)	75
	9.1	2.2	Beleuchtung (Beleuchtungssonde, Typ C)	76
	9.13	Allge	emeine Angaben	76
10		Anh	ang A	77
	10.1	Sich	erungstabelle	77
11		Anh	ang B	87
	11.1	Zub	ehör für bestimmte Messungen	87

1 Vorwort

METREL beglückwünscht Sie zum Kauf dieses Eurotest Prüfgeräts und seines Zubehörs. Das Gerät wurde auf der Basis eines reichen Erfahrungsschatzes entwickelt, der durch langjährige Aktivitäten auf dem Gebiet der Prüftechnik für elektrische Anlagen gesammelt wurde.

Das Eurotest Gerät ist als professionelles, multifunktionales, tragbares Prüfinstrument für die Durchführung aller Messungen zur umfassenden Inspektion elektrischen Anlagen in Gebäuden gedacht. Folgende Messungen und Prüfungen können durchgeführt werden:

- Spannung, Frequenz und Phasenfolge
- Durchgangsprüfung (Niederohm- und Durchgangsprüffunktion)
- Isolationswiderstand
- Fehlerstromschutz
- Schleifenwiderstand
- Leitungswiderstand
- □ TRMS Strom (nur MI 3102)
- □ Erdungswiderstand (nur MI 3102)
- Beleuchtung (nur MI 3102)

Ein großes Matrix-Grafikdisplay mit Hintergrundbeleuchtung liefert einfach abzulesende Ergebnisse, Anzeigen, Messparameter und Meldungen. Die Bedienung ist einfach und eindeutig - der Bediener braucht zur Bedienung des Instruments keine spezielle Schulung (abgesehen von der Lektüre dieses Handbuchs).

Damit der Bediener ausreichende Kenntnisse über Messungen für allgemeine und typische Anwendungen erlangt, empfehlen wir die Lektüre des Metrel-Handbuchs "Measurements on electric installations in theory and practice" (Messungen an elektrischen Anlagen in Theorie und Praxis).

Das Instrument ist mit allem notwendigen Zubehör für eine komfortable Prüfung ausgestattet. Es wird gemeinsam mit dem gesamten Zubehör in einer gepolsterten Tragetasche aufbewahrt.

2 Sicherheits- und Bedienungshinweise

2.1 Warnhinweise

Um ein hohes Maß an Bediensicherheit bei der Durchführung verschiedener Prüfungen und Messungen mit Eurotest Geräten zu erreichen und um Schäden an der Prüfausrüstung zu vermeiden, müssen folgende allgemeine Warnhinweise beachtet werden:

- Das Symbol A am Instrument bedeutet: "Lesen Sie das Handbuch besonders sorgfältig". Dieses Symbol erfordert eine Bedienungsmaßnahme.
- Wenn das Pr
 üfger
 ät nicht in der, in diesem Benutzerhandbuch vorgeschriebenen Art und Weise benutzt wird, kann der durch das Ger
 ät bereitgestellte Schutz beeintr
 ächtigt werden.
- Lesen Sie dieses Benutzerhandbuch sorgfältig durch, ansonsten kann die Benutzung des Instruments für den Bediener, das Gerät und für die zu prüfende Anlage gefährlich werden.
- Benutzen Sie das Gerät und das Zubehör nicht, wenn ein Schaden bemerkt wurde.
- Wenn eine Sicherung ausgelöst hat, diese gemäß Anleitungen in diesem Handbuch auswechseln.
- Beachten Sie alle allgemein bekannten Vorkehrungen, um während des Umgangs mit gefährlichen Spannungen das Risiko eines Stromschlags auszuschließen.
- Benutzen Sie das Gerät nicht bei Versorgungssystemen mit Spannungen über 550 V.
- Wartungseingriffe oder Einstellverfahren dürfen nur von kompetenten und befugten Personen durchgeführt werden.
- Verwenden Sie nur standardmäßiges oder optionales Prüfzubehör, welches von Ihrem Händler geliefert wurde.
- Beachten Sie, dass ältere und einige neue, optionale Prüfzubehörkomponenten, die mit diesem Instrument kompatibel sind, zur Überspannungskategorie CAT III / 300 V gehören. Dies bedeutet, dass die maximal zulässige Spannung zwischen den Prüfklemmen und Erde nur 300 V beträgt.
- Vor Öffnen der Abdeckung des Batterie-/Sicherungsfachs das gesamte Messzubehör abklemmen und das Instrument ausschalten, da sonst im Inneren gefährliche Spannung anliegt.

2.2 Batterien

Klemmen Sie vor dem Auswechseln der Batteriezellen bzw. vor Öffnung der Abdeckung des Batterie-/Sicherungsfachs das gesamte am Instrument angeschlossene Messzubehör ab, und schalten Sie das Instrument aus. Sonst liegt im Inneren gefährliche Spannung an!

- Legen Sie die Zellen richtig ein, sonst funktioniert das Instrument nicht und die Batterien könnten entladen werden.
- Entfernen Sie alle Batterien aus dem Batteriefach, wenn das Instrument über einen längeren Zeitraum nicht benutzt wird.
- Es können Alkalibatterien oder wiederaufladbare Ni-Cd- oder Ni-MH-Akkumulatoren (Größe AA) verwendet werden. Die Betriebsstunden sind für Zellen mit einer Nennkapazität von 2100 mAh angegeben.
- Laden Sie Alkalibatterien nicht wieder auf, Explosionsgefahr!

2.3 Laden

Die Batterien werden immer dann geladen, wenn das Ladegerät an das Instrument angeschlossen ist. Eingebaute Schutzstromkreise steuern den Ladevorgang und gewährleisten die maximale Lebensdauer der Akkumulatoren. Die Polarität der Ladebuchse ist in Abb. 2.1 dargestellt.

Abb. 2.1: Polarität der Ladebuchse

Hinweis:

 Benutzen Sie nur das vom Hersteller oder Händler des Prüfgeräts gelieferte Ladegerät, um Brände oder Stromschlag zu vermeiden.

2.4 Vorkehrungen für die Ladung neuer Batterien oder von Batterien, die längere Zeit nicht benutzt wurden

Während des Ladens neuer Batterien oder von Batterien, die über eine längere Zeit (länger als 3 Monate) nicht benutzt wurden, können unvorhersehbare chemische Prozesse auftreten. Ni-MH- und Ni-Cd-Batterien sind unterschiedlich betroffen (dieser Effekt wird manchmal Memory-Effekt genannt). Infolgedessen kann die Betriebszeit des Instruments bei den ersten Lade-/Entlade-Zyklen wesentlich verkürzt werden.

Daher wird Folgendes empfohlen:

- Vollständiges Laden der Batterien (mindestens 14 Std. mit eingebautem Ladegerät).
- Vollständige Entladung der Batterien (kann bei normaler Arbeit mit dem Instrument erfolgen).
- Mindestens zweimalige Wiederholung des Lade-/Entlade-Zyklusses (vier Zyklen werden empfohlen).

Bei der Verwendung externer, intelligenter Batterieladegeräte wird automatisch ein Entlade-/Lade-Zyklus durchgeführt.

Nach Durchführung dieses Verfahrens wird die normale Batteriekapazität wiederhergestellt. Die Betriebszeit des Instruments entspricht nun den Angaben in den technischen Daten.

Hinweis:

- Das Ladegerät im Instrument ist ein sogenanntes Zellenpack-Ladegerät. Das bedeutet, dass die Batterien während des Ladens in der Reihe geschaltet sind. Daher müssen alle Batterien in gleichartigem Zustand vorliegen (ähnlicher Ladezustand, gleicher Typ und gleiches Alter).
- Eine einzige Batterie in schlechtem Zustand (oder eine von einem anderen Typ) kann eine untaugliche Ladung des gesamten Batteriepacks bewirken (Erwärmung des Batteriepacks, wesentlich verkürzte Betriebszeit).
- Wenn nach Durchführung mehrerer Lade-/Entladezyklen keine Verbesserung erreicht wird, sollte der Zustand der einzelnen Batterien bestimmt werden (durch Vergleich der Batteriespannungen, deren Überprüfung in einem Zellenladegerät etc.). Es ist sehr wahrscheinlich, dass sich nur einige der Batterien verschlechtert haben.
- Die oben beschriebenen Effekte dürfen nicht mit der normalen Minderung der Batteriekapazität über die Zeit verwechselt werden. Alle aufladbaren Batterien verlieren durch wiederholte Ladung/Entladung einiges an ihrer Kapazität. Die tatsächliche Kapazitätsverminderung als Funktion der Ladezyklen hängt vom Batterietyp ab und wird in den technischen Daten des Batterieherstellers angegeben.

2.5 Anwendbare Standards

Das Eurotest-Instrument wird in Übereinstimmung mit folgenden Vorschriften hergestellt und geprüft:

Sicherheitsvorschriften	EN 61010-1:2001
Elektromagnetische Verträglichkeit	
(Emission und Störfestigkeit)	EN 61326:2002
Elektrische Sicherheit in Niederspannungsnetzen	
Geräte zum Prüfen, Messen oder Überwachen von	Schutzmaßnahmen
Messungen gemäß dem Europäischen	
Standard EN61557:	
Allgemeine Anforderungen	Teil 1
Isolationswiderstand	Teil 2
Schleifenwiderstand	Teil 3
Widerstand von Erdungsleitern, Schutzleitern und	
Potentialausgleichsleitern	Teil 4
Erdungswiderstand	Teil 5
Fehlerstrom-Schutzeinrichtungen (RCD) in	
TT- und TN-Netzen	Teil 6
Phasenfolge	Teil 7
Kombinierte Messgeräte	Teil 10
5	

Beleuchtungsmessung gemäß dem Standard DIN 5032Teil 7

3 Beschreibung des Instruments

3.1 Front-Bedienfeld

Abb. 3.1: Front-Bedienfeld

Legende:

- 1.....EIN/AUS-Taste zur Ein- bzw. Ausschaltung des Instruments Das Instrument wird 10 Minuten nach der letzten Betätigung einer Taste oder Drehung des Funktionswahlschalters automatisch ausgeschaltet.
- 2.....Funktionswahlschalter
- 3......MI 3100: CAL-Taste zur Kompensation des Prüfleitungswiderstandes bei der Niederohmessung

- 4 MI 3100: HILFE-Taste für den Zugang zu den Hilfe-Menüs
 - MI 3102: HILFE/KAL Taste, für den Zugang zu den Hilfe-Menüs. Die CAL Funktion ist in der Niederohmessung aktiviert und dient zur Kompensation des Prüfleitungswiderstandes.
- 5.....Tipptastenfeld mit Cursortasten und TEST-Taste
 - Die TEST-Taste fungiert auch als Schutzleiterkontaktelektrode.
- 6......Taste zur Veränderung der Stärke und des Kontrasts der Hintergrundbeleuchtung Starke Hintergrundbeleuchtung wird 20 Sek. nach der letzten Betätigung einer Taste oder Drehung des Funktionswahlschalters automatisch ausgeschaltet, um die Betriebszeit der Batterien zu verlängern.
- 7.....128 \times 64-Punkt-Matrix-Display mit Hintergrundbeleuchtung

MI 3102: SPEICHERN Taste key für speichern, abrufen und löschen von Messergebnissen.

3.2 Anschlussfeld

Abb. 3.2: Anschlussfeld

Legende:

1 Prüfanschluss

Achtung: Die maximal zulässige Spannung zwischen den Prüfklemmen und Erde beträgt 600 V. Die maximal zulässige Spannung zwischen Prüfklemmen beträgt 550 V.

- 2Ladebuchse
- 3Anschluss-Schutzdeckel (schützt vor dem gleichzeitigen Anschluss des Prüfkabels und des Ladegeräts)

Nur MI 3102: Bei der Erdungswiderstandmessung sind die Messklemmen folgend belegt:

- Die L/L1 schwarze Prüfleitung ist als die Hilfserderelektrode (H) benutzt.
- Die N/L2 blaue Prüfleitung ist als die Erderelektrode (E) benutzt.
- Die PE/L3 grüne Prüfleitung ist als die Messsonde (S) benutzt.
- 4....RS 232 Schnittstelle (nur MI 3102)
- 5....USB Schnittstelle (nur MI 3102)
- 6....Messanschluss für die Stromzange

3.3 Rückwand

Abb. 3.3: Rückwand

Legende:

- 1.....Abdeckung des Batterie-/Sicherungsfachs
- 2.....Informationsschild
- 3..... Befestigungsschrauben für die Abdeckung des Batterie-/Sicherungsfachs

Abb. 3.4: Batterie- und Sicherungsfach

Legende:

- 1.....Sicherung F1
- 2.....Sicherung F2
- 3..... Sicherung F3
- 4.....Seriennummernschild
- 5.....Batterien (Größe AA)
- 6.....Batteriehalterung

3.4 Bodenansicht

Abb. 3.5: Bodenansicht

Legende:

- 1.....Informationsschild
- 2.....Tragriemenöffnungen

3.....Schraube

3.5 Tragen des Instruments

Mit dem standardmäßig mitgelieferten Tragriemen kann das Instrument auf unterschiedliche Weise getragen werden. Der Bediener kann sich die für seine Tätigkeit geeignete Form aussuchen, siehe folgende Beispiele:

Das Instrument hängt nur um den Hals des Bedieners - schnelles Aufstellen und Mitnehmen.

Das Instrument kann sogar in der gepolsterten Tragetasche benutzt werden das Prüfkabel wird durch die Öffnung vorn angeschlossen.

3.6 Ausstattung und Zubehör des Instruments

3.6.1 Standardausstattung

	EurotestEASI – MI 3100	EurotestXE – MI 3102
Instrument	gepolsterte Tragetasche Tragriemen, 2Stk	gepolsterte Tragetasche Tragriemen, 2Stk
Messzubehör	Universalprüfkabel Taster-Prüfspitze Schuko-Prüfkabel drei Prüfspitzen drei Krokodilklemmen	Universalprüfkabel Taster-Prüfspitze Schuko-Prüfkabel drei Prüfspitzen drei Krokodilklemmen Erdungswiderstandmessung Set – 20 m Prüfleitungen (schwarz, 20 m) (blau, 4 m) (grün, 20 m)
Dokumenten	Kurze Bedienungsanleitung Produktprüfdaten Garantieerklärung Konformitätserklärung	Kurze Bedienungsanleitung Produktprüfdaten Garantieerklärung Konformitätserklärung

Batterien	6 Ni-MH aufladbaren Batterien Ladegerät	6 Ni-MH aufladbaren Batterien Ladegerät
Kabeln		RS232 Kabel USB Kabel
CD-ROM	Bedienungsanleitung Kurze Bedienungsanleitung Handbuch <i>Measurements on</i> <i>electric installations in theory and</i> <i>practice</i> (Messungen an elektrischen Anlagen in Theorie und Praxis)	Bedienungsanleitung Kurze Bedienungsanleitung Handbuch <i>Measurements on electric</i> <i>installations in theory and practice</i> (Messungen an elektrischen Anlagen in Theorie und Praxis) EuroLinkXE PC Software

3.6.2 Optionales Zubehör

	EurotestEASI – MI 3100	EurotestXE – MI 3102
Optional	Taster-Stecker (A1001)	Taster-Stecker (A1001)
accessories	Dreiphasenkabel (A 1110)	Dreiphasenkabel (A 1110)
	Dreiphasenadapter (A 1111)	Dreiphasenadapter (A 1111)
	Prüfleitung (schwarz, 4 m)	Prüfleitung (schwarz, 50 m)
	Prüfleitung (schwarz, 20 m)	Zellenschnellladegerät für 6 Zellen
	Prüfleitung (schwarz, 50 m)	(für AA Batterien)
	Zellenschnellladegerät für 6 Zellen	Low-range Stromzange (A 1018)
	(für AA Batterien)	Mini Stromzange
	Zellenschnellladegerät für 12 Zellen	Beleuchtungssonde Typ B (A 1102)
	(für C und AA Batterien)	Beleuchtungssonde Typ C (A 1119)
		Zellenschnellladegerät für 6 Zellen
		(für AA Batterien)
		Zellenschnellladegerät für 12 Zellen
		(für C und AA Batterien)

Eine Aufstellung des, auf Anfrage von Ihrem Händler erhältlichen optionalen Zubehörs, finden Sie auf dem Beilageblatt.

4 Bedienung des Instruments

4.1 Bedeutung der Symbole und Meldungen auf dem Display des Instruments

Das Instrumentendisplay ist auf vier Hauptabschnitte unterteilt:

Abb. 4.1: Displayansicht

Legende:

1.....Funktions- und Parameterzeile

In der oberen Displayzeile werden die Messfunktion/-unterfunktion und die Parameter angezeigt.

2.....Meldungsfeld

In diesem Feld werden der Batteriestatus und Warnhinweise/Meldungen in Bezug auf den tatsächlichen Messwert angezeigt.

3.....Online-Spannungs -und Ausgangswächter

4.....Ergebnisfeld

In diesem Feld werden das Hauptergebnis und dieTeilergebnisse, zusammen mit dem Status BESTANDEN/NICHT BESTANDEN/ABBRUCH, angezeigt.

4.1.1 Online-Spannungs- und Ausgangsklemmenwächter

Die Online-Spannung wird zusammen mit der Prüfklemmendarstellung angezeigt. Alle drei Prüfklemmen werden für die ausgewählte Messung benutzt.
Die Online-Spannung wird zusammen mit der Prüfklemmendarstellung angezeigt. Die Prüfklemmen L und N werden für die ausgewählte Messung benutzt.
Polarität der an die Ausgangsklemmen L und N angelegten Prüfspannung.

4.1.2 Meldungsfeld - Batteriestatus

	Batteriekapazitätsanzeige.
٥	Anzeige einer entladenen Batterie. Das Batteriepack ist zu schwach, um ein richtiges Ergebnis zu garantieren. Batterien auswechseln.
	Aufladung läuft (wenn das Ladegerät angeschlossen ist).

4.1.3 Meldungsfeld - Messwarnhinweise/-meldungen

Ş	Achtung: An die Prüfklemmen ist hohe Spannung angelegt.
S	Achtung: Phasenspannung an der PE-Klemme! Alle Messungen sind sofort einzustellen, und der Fehler muss vor weiterer Bedienung behoben werden.
X	Messung läuft. Beachten Sie alle angezeigten Warnhinweise.
	Die Messung kann nach Drücken der Taste TEST durchgeführt werden. Beachten Sie alle angezeigten Warnhinweise nach dem Beginn der Messung.
	Messung verboten! Beachten Sie alle angezeigten Warnhinweise und kontrollieren Sie den Online- Spannungs-/Klemmenwächter.
Co	Der Widerstand der Prüfleitungen bei der Niederohmmessung wird kompensiert.
RED ₹◆	Die Fehlerstrom-Schutzeinrichtung ist während der Messung ausgelöst worden. Möglicherweise wurde die Auslösegrenze infolge von Leckströmen überschritten, die zum PE-Schutzleiter oder über die kapazitive Verbindung zwischen den Leitern L und PE fließen.

Die Fehlerstrom-Schutzeinrichtung ist während der RCD -Messung nicht ausgelöst worden. Instrument überhitzt. Die Temperatur der internen Komponenten im Instrument hat die Obergrenze erreicht. A Die Messung ist verboten, bis die Temperatur geringer als der Grenzwert ist. Die Batteriekapazität ist zu gering, um ein richtiges (\bullet) Ergebnis zu garantieren. Batterien auswechseln. Sicherung F1 (Durchgangsstromkreis) durchgebrannt **E**1 oder nicht eingelegt. Einfacher Fehler im IT-Netz. SF ≁ Die Störspannung zwischen den Prüfklemmen H und E oder S beeinflusst das Ergebnis. 70 Der Hifserdersondenwiderstand ist zu hoch. 7 Der Messsondenwiderstand ist zu hoch Beide Sondenwiderstände sind zu hoch

4.1.4 Ergebnisfeld

\checkmark	Messung bestanden.
X	Messung nicht bestanden.
Ø	Messung wurde abgebrochen. Zustände an der Eingangsklemme überprüfen.

4.1.5 Andere Meldungen

HARD RESET	Die Instrumenteinstellungen und die Messparameter/Grenzwerte werden auf die ursprünglichen Werte (Werksvoreinstellungen) gesetzt. Weitere Informationen erhalten Sie im Abschnitt 4.5.4 <i>Aufruf der Originaleinstellungen</i> .
No probe	Die Beleuchtungssonde ist ausgeschaltet oder nicht an das Instrument angeschlossen.
Erste Ergebnisse	Die zuerst gespeicherte Ergebnisse sind angezeigt.
Letzte Ergebnisse	Die letzte gespeicherte Ergebnisse sind angezeigt.

Speicher voll	Alle Speicherplätze sind besetzt.	
Gerade gespeichert	Das Messergebnis wurde gerade erfolgreich gespeichert.	
CHECK SUM ERROR	Wichtige interne Gerätedaten wurden beschädigt oder verloren. Wenden Sie sich an Ihren Händler oder Hersteller um die Ursache zu klären.	

4.1.6 Warntöne

Kürzester Ton	Gedrückte Taste deaktiviert; Unterfunktion ist nicht verfügbar.
Kurzer Ton	Gedrückte Taste aktiviert; die Messung wurde nach Betätigung der Taste TEST gestartet. Beachten Sie während der Messung alle angezeigten Warnhinweise.
Langer Ton	Messung verboten! Beachten Sie alle angezeigten Warnhinweise und kontrollieren Sie den Online- Spannungs-/Klemmenwächter.
Intervallton	Achtung: Phasenspannung an der PE-Klemme! Alle Messungen sind sofort einzustellen, und der Fehler muss vor weiterem Betrieb behoben werden.

4.1.7 Funktions - und Parameterzeile

Abb. 4.2: Funktionswahlschalter und zugehörige Parameterzeile

Legende:

- 1.....Bezeichnung der Hauptfunktion
- 2.....Bezeichnung der Funktion bzw. Unterfunktion
- 3.....Messparameter und Grenzwerte

4.1.8 Auswahl der Messfunktion/-Unterfunktion

Folgende Messungen können mit dem Funktionswahlschalter ausgewählt werden:

- Spannung und Frequenz
- Isolationswiderstand
- Niederohmmessung
- Fehlerstrom-Schutzprüfung
- Fehlerschleifenwiderstand
- Leitungswiderstand
- □ Phasenfolge
- Erdungswiderstand (nur MI 3102)
- □ TRMS Strom (nur MI 3102)
- Beleuchtung (nur MI 3102).

Standardmäßig wird die Bezeichnung der Funktion/Unterfunktion auf der Anzeige hervorgehoben.

Die Unterfunktion kann mit den Tasten ∧ und ∀ in der Funktions-/Parameterzeile ausgewählt werden.

4.2 Einstellung der Messparameter und Grenzwerte

Wählen Sie mit den Tasten \prec und \succ den Parameter/Grenzwert, den Sie bearbeiten wollen. Der ausgewählte Parameter kann mit den Tasten \land und \lor eingestellt werden.

Nachdem die Messparameter eingestellt wurden, werden die Einstellungen beibehalten, bis neue Änderungen vorgenommen oder die Originaleinstellungen wiederaufgerufen werden.

4.3 Hilfe-Menü

Zu allen Funktionen gibt es Hilfe-Menüs. Das **Hilfe**-Menü enthält Prinzipschaltbilder zur Illustration, wie das Instrument an die elektrische Anlage anzuschließen ist. Drücken Sie nach der Auswahl der Messung, die Sie durchführen möchten, die HELP-Taste, um das zugehörige **Hilfe**-Menü zu betrachten.

Drücken Sie die HELP-Taste erneut, um weitere **Hilfe**-Bildschirme anzusehen, sofern vorhanden, oder um in das Funktionsmenü zurückzukehren.

Abb. 4.3: Beispiel des Hilfe-Menüs

4.4 Einstellungsmenü

Im Menü "Einstellung" können folgende Aktionen durchgeführt werden:

- Auswahl des Versorgungsnetzes
- Einstellung des Skalierungsfaktors f
 ür den unbeeinflussten Kurzschluss-/Fehlerstrom
- □ Sprachauswahl
- Auswahl der Schnittstelle

Um in das Menü **Einstellung** zu kommen, muss die Taste A gedrückt und gleichzeitig der Funktionswahlschalter in eine beliebige Stellung gedreht werden.

Drehen Sie den Funktionswahlschalter erneut, um das Menü **Einstellung** bzw. dessen Untermenüs zu verlassen.

Abb. 4.4: Einstellungsmenü

4.4.1 Einstellung des Versorgungsnetzes

Das Instrument ermöglicht Prüfungen und Messungen an folgenden Versorgungsnetzen:

- □ TN (TT)-Netz
- □ IT-Netz
- □ Netz mit verminderter Spannung (2×55 V)
- □ Netz mit verminderter Spannung (3×63 V)

Wählen Sie durch Betätigung der Tasten ▲ und ¥ NETZE im Menü **Einstellung**, und drücken Sie die TEST-Taste, um in das Einstellungsmenü für das **Versorgungsnetz** zu kommen

NETZE		
> TN/TT IT VERMIND. VERMIND.	SP:	550 630

Abb. 4.5: Versorgungsnetz-Auswahlmenü

Wählen Sie das Versorgungsnetz mit den Tasten ▲ und ¥, und drücken Sie die TEST-Taste zur Annahme der Einstellung.

4.4.2 Einstellung des Skalierungsfaktors für den unbeeinflussten Kurzschluss-/Fehlerstrom

Wählen Sie mit den Tasten \wedge und \vee im Menü **Einstellung** die Option "EINST. SKAL. I_{SC}", und drücken Sie die TEST-Taste, um in das Einstellungsmenü für den **Skalierungsfaktor des unbeeinflussten Kurzschluss-/Fehlerstromes** zu kommen.

Abb. 4.6: Einstellungsmenü für den Skalierungsfaktor

Benutzen Sie die Tasten ▲ und ♥, um den Skalierungsfaktor einzustellen. Drücken Sie die TEST-Taste zur Übernahme der neuen Einstellung. Weitere Informationen über den Skalierungsfaktor des unbeeinflussten Kurzschluss-/Fehlerstromes erhalten Sie in den Abschnitten 5.3 und 5.4.

4.4.3 Sprachauswahl

Wählen Sie durch Betätigung der Tasten ▲ und ¥ die Option SPRACHEINSTELLUNG im Menü **Einstellung**, und drücken Sie die TEST-Taste, um in das Menü für die **Sprachauswahl** zu kommen.

SPRACHEINSTELLUNG
> ENGLISH DEUTSCH

Abb. 4.7: Menü für die Sprachauswahl

Wählen Sie mit den Tasten A und V die von Ihnen gewünschte Sprache. Drücken Sie die TEST-Taste zur Übernahme der neuen Einstellung.

4.4.4 Auswahl der Schnittstelle (nur MI 3102)

Wählen Sie durch Betätigung der Tasten ▲ und ૪ die SCHNITTSTELLENEINSTELLUNG im Menü **Einstellung**, und drücken Sie die TEST-Taste, um in das Menü für die Auswahl der **Schnittstelle** zu kommen.

SC	HNITTST	ELLEEINS.
>	RS 232 USB	4 9600▶ 115200

Abb. 4.8: Menu zur Auswahl der Schnittstelle

Wählen Sie mit den Tasten ▲ und ➤ die gewünschte Schnittstelle. In der Einstellung RS232 stehlen Sie die gewünschte Baudrate mit den Tasten ≺ und ➤ ein. In der Einstellung USB ist die Baudrate fix auf 115200bps gesetzt. Drücken Sie die TEST-Taste zur Übernahme der neuen Einstellung.

Achtung:

• Nur eine Schnittstelle kann zur selben Zeit gesetzt sein.

4.4.5 Wiederherstellung der ursprünglichen Einstellungen

Folgende Parameter und Einstellungen können auf die ursprünglichen Werte (Werksvoreinstellungen) gestellt werden:

- Prüfparameter und Grenzwerte
- □ Kontrast
- Skalierungsfaktor für den unbeeinflussten Kurzschluss-/Fehlerstrom
- Versorgungsnetz
- □ Schnittstelle (nur MI 3102)

Drücken und halten Sie zur Wiederherstellung der ursprünglichen Einstellung die Taste ≽ und schalten Sie das Instrument ein. Eine Zeitlang wird die Meldung "Hard Reset" angezeigt.

Die Einstellungen, Messparameter und Grenzwerte werden wie folgt auf ihre ursprünglichen Werte zurückgestellt:

Instrumenteneinstellungen	Voreinstellung
Kontrast	50 %
Skalierungsfaktor für den unbeeinflussten Kurzschluss- /Fehlerstrom	1,00
Versorgungsnetz	TN/TT
Schnittstelle	RS 232

Funktion Unterfunktion	Parameter / Grenzwert
DURCHGANG	Unterfunktion: RKLEIN
Niederohm	Widerstandsobergrenze: 2,0 Ω
Durchgang	Widerstandsobergrenze: 20,0 Ω
ISOLATIONSWIDERSTAND	Nennprüfspannung: 500 V
	Widerstandsuntergrenze: 1 M Ω
LEITUNGSWIDERSTAND	Sicherungstyp: keiner ausgewählt (*F) Strombemessung der Sicherung: keine ausgewählt (*A) Auslösestrom der Sicherung: keiner ausgewählt (*ms)
FEHLERSTROM- SCHUTZEINRICHTUNG	Unterfunktion: RCD Uc

Berührungsspann. – RCD Uc Auslösezeit – RCD t Auslösestrom – RCD III Autotest – RCD AUTO	Nenndifferentialstrom: I _{ΔN} =30 mA Fehlerstrom-Schutzgerätetyp und Anfangspolarität des Prüfstroms: G Grenzwert der Berührungsspannung: 50 V Nenndifferenzstrom-Multiplikator: ×1
FEHLERSCHLEIFENWIDER- STAND	Prüfung von Fehlerstrom-Schutzeinrichtungen mit Nenndifferenzstrom ≥ 30 mA
ERDUNGSWIDERSTAND (nur MI 3102)	Widerstandsobergrenze: 20 Ω
BELEUCHTUNG (nur MI 3102)	Beleuchtungsuntergrenze: 300 lux
TRMS STROM (nur MI 3102)	Stromobergrenze: 20 mA

4.5 Einstellung des Anzeigekontrasts

Wenn die schwache Hintergrundbeleuchtung aktiviert ist, drücken und halten Sie die HINTERGRUNDBELEUCHTUNGS-Taste, bis das Menü zur Einstellung des **Anzeigekontrasts** eingeblendet wird.

Abb. 4.9: Kontrasteinstellungsmenü

Benutzen Sie die Tasten ▲ und ∀ zur Einstellung des Kontrasts. Drücken Sie die TEST-Taste zur Übernahme der neuen Einstellung.

5 Messungen

5.1 Isolationswiderstand

Die Isolationswiderstandsmessung wird durchgeführt, um sich von der Sicherheit gegen Stromschlag zu überzeugen. Mit dieser Messung können folgende Werte bestimmt werden:

- Isolationswiderstand zwischen Leitern der Anlage
- □ Isolationswiderstand nichtleitender Bereiche (Wände und Fußböden)
- Isolationswiderstand der Erdungskabel
- Widerstand von halbleitenden (antistatischen) Fußböden

Weitere Informationen über die Messung des Isolationswiderstands finden Sie im Metrel-Handbuch "Measurements on electric installations in theory and practice" (Messungen an elektrischen Anlagen in Theorie und Praxis).

So führen Sie die Messung des Isolationswiderstands durch:

Schritt 1 Wählen Sie mit dem Funktionswahlschalter die Funktion Isolation (Isolation). Folgendes Menü wird eingeblendet:

Abb. 5.1: Menü zur Messung des Isolationswiderstands Schließen Sie das Prüfkabel an das Eurotest-Gerät an.

Schritt 2 Stellen Sie folgende Messparameter und Grenzwerte ein:

- Nennprüfspannung
- Widerstandsuntergrenze
- **Schritt 3** Schließen Sie das Prüfkabel an die zu prüfende Komponente an. Befolgen Sie zur Durchführung der Isolationswiderstandsmessung den Anschlussplan in Abb. 5.2. Benutzen Sie bei Bedarf die **Hilfe**-Funktion.

Abb. 5.2: Anschluss des Universalprüfkabels und der Taster-Prüfspitze

Schritt 4 Kontrollieren Sie vor Beginn der Messung die angezeigten Warnhinweise und den Online-Spannungs-/Klemmenwächter. Wenn es keine Beanstandungen gibt, drücken und halten Sie die TEST-Taste, bis sich das Ergebnis stabilisiert hat. Während der Messung werden auf dem Display die tatsächlichen Messergebnisse angezeigt.

Nachdem die TEST-Taste losgelassen wird, werden die letzten Messergebnisse zusammen mit der Anzeige BESTANDEN/NICHT BESTANDEN (sofern zutreffend) angezeigt.

Abb. 5.3: Beispiel eines Ergebnisses der Isolationswiderstandsmessung

Angezeigte Ergebnisse:

R Isolationswiderstand Um Prüfspannung des Instruments

Das angezeigte Messergebnis, falls gewünscht, speichern. Siehe Kapitel 6.1 für weitere Informationen über Einstellfunktionen und speichern von Messergebnissen. (nur MI 3102)

Achtung:

- Die Isolationswiderstandsmessung darf nur an stromlosen Objekten durchgeführt werden!
- Bei der Messung des Isolationswiderstands zwischen Leitern der Anlage müssen alle Lasten getrennt und alle Schalter geschlossen sein.
- Berühren Sie während der Messung, bzw. vor der vollständigen Entladung, das Prüfobjekt nicht. Es besteht die Gefahr eines Stromschlags!
- Wenn eine Isolationswiderstandsmessung an einem kapazitiven Objekt durchgeführt wurde, kann möglicherweise eine automatische Entladung nicht sofort erfolgen. Das Warnsymbol Mund die tatsächliche Spannung werden während der Entladung angezeigt, bis die Spannung unter 10 V abfällt.

Hinweis:

5.2 Isolationsüberwachung in IT Systemen (nur MI 3102)

In IT System sind die aktiven Teile entweder gegen Erde isoliert, oder über eine ausreichend hohe Impedanz geerdet.

Normalerweise besteht die hohe Impedanz grundsätzlich aus Kapazivitäten der Leitungen gegen Erde und Kapazivitäten zwischen den Wicklungen des Leistungstransformators. Es sind nur niedrige Leckströme in IT-Systemen zu erwarten.

IT Systemen bieten einen zusätzlichen Schutz im Falle eines Erdschlusses. Im Falle eines ersten Fehlers ist eine Abschaltung nicht unbedingt gefordert. Es wird aber empfohlen den Fehler so schnell wie möglich zu beseitigen. Im Falle eines zweiten Fehlers musst aber das System sofort abgeschaltet werden.

In modernen Anlagen werden Isolations-Überwachungsgeräte zur Lokalisierung des ersten Fehlers eingebaut, um den "zweiten Fehlerfall" erst gar nicht entstehen zu lassen. Die Signalisierung erfolgt bei einer Isolationswertunterschreitung. Typische Grenzwerte liegen bei etwa 50 k Ω .

EurotestXE ermöglicht:

- Die Messung des Fehlerstroms im Falle des ersten Fehlers
- Simulierung eines Leckstroms um die Alarmauslösegrenze des Überwachungsgerätes zu überprüfen.
- Die Messung des Leckstroms durch den Isolationswiderstand bei der Alarmgrenze (im Falle des ersten Fehlers).

Hinweis:

 Um diese Messungen zu ermöglichen, muss das IT System im Einstellungsmenü eingestellt werden.

So wird die Messung des Fehlerstroms im Falle des ersten Fehlers durchgeführt:

Schritt 1 Wählen Sie mit dem Funktionswahlschalter die Funktion Insulation (Isolation). Benutzen Sie die Tasten A/Y, um die Funktion ISFL auszuwählen. Folgendes Menü wird eingeblendet: Folgendes Menü wird eingeblendet:

STRO	M(EF)	4.0mA
Isc1 Isc2	:mí :mí	1
9	X	

Abb 5.4: Menü zur Messung des Fehlerstroms

Schließen Sie das Prüfkabel an das Eurotest-Gerät an.

Schritt 2 Stellen Sie folgenden Grenzwert:

- Erster Fehler Stromobergrenze
- **Schritt 3** Schließen Sie das Prüfkabel an die zu prüfende Komponente an. Befolgen Sie zur Durchführung der Fehlerstrommessung den Anschlussplan in Abb. 5.5. Benutzen Sie bei Bedarf die **Hilfe**-Funktion.

Abb. 5.5: Anschluss des Universalprüfkabels

 Schritt 4 Kontrollieren Sie vor Beginn der Messung die angezeigten Warnhinweise und den Online-Spannungs-/Klemmenwächter. Wenn es keine Beanstandungen gibt, drücken und halten Sie die TEST-Taste. Während der Messung werden auf dem Display die tatsächlichen Messergebnisse angezeigt. Nachdem die Messung beendet ist, werden die letzten Messergebnisse zusammen mit der Anzeige BESTANDEN/NICHT BESTANDEN (sofern zutreffend) angezeigt.

Abb. 5.6: Beispiel eines Ergebnisses der Fehlerströmen im Falle des ersten Fehlers Angezeigte Ergebnisse:

- I_{SC1}...... Der Fehlerstrom im Falle des ersten Fehlers zwischen L1 und PE Leitungen
- I_{SC2}...... Der Fehlerstrom im Falle des ersten Fehlers zwischen L2 und PE Leitungen

Das angezeigte Messergebnis, falls gewünscht, speichern. Siehe Kapitel 6.1 für weitere Informationen über Einstellfunktionen und speichern von Messergebnissen.

So wird die Prüfung der Alarmauslösegrenze von Isolationsüberwachung – Geräten durchgeführt:

Schritt 1 Wählen Sie mit dem Funktionswahlschalter die Funktion **Insulation** (Isolation). Benutzen Sie die Tasten ▲/文, um die Funktion **IMD CHECK** auszuwählen. Folgendes Menü wird eingeblendet:

ALAR	M GRENZ	4.0mA
R1:-	kΩ kΩ	I1:mA I2:mA
	X	

Abb. 5.6: Menü zur Prüfung von Isolationsüberwachung – Geräten Schließen Sie das Prüfkabel an das Eurotest-Gerät an.

- Schritt 2 Stellen Sie folgenden Grenzwert ein:
 - □ Alarmauslösegrenze (Strom)
- **Schritt 3** Schließen Sie das Prüfkabel an die zu prüfende Komponente an. Befolgen Sie zur Durchführung der Prüfung den Anschlussplan in Abb. 5.5. Benutzen Sie bei Bedarf die **Hilfe**-Funktion.
- Schritt 4 Kontrollieren Sie vor Beginn der Messung die angezeigten Warnhinweise und den Online-Spannungs-/Klemmenwächter. Wenn es keine Beanstandungen gibt, drücken Sie die TEST-Taste. Benutzen Sie die Tasten ▲/▼, um den simulierten Isolationswiderstand solange zu erniedrigen, bis der Alarm des Isolationsüberwachung – Gerätes auslöst.
- Auf dem Display werden die tatsächlichen Isolationswiderstand und Fehlerstrom zwischen den Leitungen L1 und PE angezeigt, zusammen mit der Anzeige BESTANDEN/ NICHT BESTANDEN (sofern zutreffend).

Abb. 5.7: Simulierung des ersten Fehlers zwischen L1 und PE

Schritt 5 Benutzen Sie die Taste ♀ um den Isolationswiderstand bzw. Fehlerstrom zwischen den Leitungen L2 und PE zu simulieren. Wiederholen Sie den Schritt 4. Auf dem Display werden die tatsächlichen Isolationswiderstand und Fehlerstrom zwischen den Leitungen L2 und PE angezeigt, zusammen mit der Anzeige BESTANDEN/NICHT BESTANDEN (sofern zutreffend).

ALA	RM GRENZ	4.0 mA
R1: R2:	57.2kΩ 57.2kΩ	I1:2.1mA
1		L1 PE L2 115 0 115 0 230

Abb. 5.8: Simulierung des ersten Fehlers zwischen L2 und PE

Angezeigte Ergebnisse:

R1	Grenzwert (bei dem der Alarm auslöst) des
	Isolationswiderstandes zwischen L1 und PE.
11	Der Fehlerstrom im Falle des ersten Fehlers (beim Grenzwert
	des Isolationswiderstandes) zwischen L1 und PE.
R2	Grenzwert (bei dem der Alarm auslöst) des
	Isolationswiderstandes zwischen L2 und PE.
12	Der Fehlerstrom im Falle des ersten Fehlers (beim Grenzwert
	des Isolationswiderstandes) zwischen L2 und PE.

Das angezeigte Messergebnis, falls gewünscht, speichern. Siehe Kapitel 6.1 für weitere Informationen über Einstellfunktionen und speichern von Messergebnissen.

Hinweis:

5.3 Durchgangsprüfung

Es sind zwei Unterfunktionen der Durchgangsprüfung verfügbar:

- Niederohmmessung
- Durchgangsmessung

5.3.1 Niederohmmessung

Diese Prüfung wird benutzt, um die elektrische Sicherheit und den richtigen Anschluss aller Schutz-, Erdungs- und Potentialausgleichsleiter zu gewährleisten. Die Niederohmmessung wird mit einer automatischen Umpolung der Prüfspannung und einem Prüfstrom über 200 mA durchgeführt. Diese Messung erfüllt voll und ganz die Anforderungen der Norm EN61557-4.

5.3.2 Durchgangsprüfung

Die Messung dauerhafter geringer Widerstände kann ohne Umpolung der Prüfspannung und mit einem geringeren Prüfstrom durchgeführt werden. Allgemein dient die Funktion als normales Ohmmeter mit geringem Prüfstrom. Die Funktion kann auch zur Prüfung induktiver Komponenten benutzt werden.

Weitere Informationen über die Durchgangsmessung finden Sie im Metrel-Handbuch "Measurements on electric installations in theory and practice" (Messungen an elektrischen Anlagen in Theorie und Praxis).

So wird die Niederohmmessung durchgeführt:

Schritt 1 Wählen Sie mit dem Funktionswahlschalter die Funktion Continuity (Durchgang). Benutzen Sie die Tasten ▲/☞, um die Funktion RKLEIN auszuwählen. Folgendes Menü wird eingeblendet:

Abb. 5.10: Niederohmmessmenü Schließen Sie das Prüfkabel an das Eurotest-Gerät an.

Schritt 2 Stellen Sie folgenden Grenzwert ein:

- Widerstandsobergrenze
- **Schritt 3** Kompensieren Sie vor der Durchführung der Niederohmprüfung den Widerstand der Prüfleitungen wie folgt:
 - 1. Schließen Sie die Prüfleitungen kurz, siehe Abb. 5.5.

Abb. 5.11: Kurzgeschlossene Prüfleitungen

- 2. Drücken Sie die TEST-Taste, um eine normale Messung vorzunehmen. Ein Ergebnis nahe 0,00 Ω wird angezeigt.
- Drücken Sie die Taste CAL. Nach der Durchführung der Prüfleitungskompensation wird das Symbol für kompensierte Prüfleitungen eingeblendet.
- 4. Zur Aufhebung der Potentialkompensation führen Sie das in diesem Schritt beschriebene Verfahren mit offenen Prüfklemmen durch. Nach der Aufhebung der Kompensation verschwindet die Kompensationsanzeige.

Die in dieser Funktion durchgeführte Kompensation wird bei der **Durchgangsmessung** berücksichtigt.

Schritt 4 Schließen Sie das Pr
üfkabel an die zu pr
üfende Komponente an. Befolgen Sie zur Durchf
ührung der Niederohmmessung den Anschlussplan in den Abbildungen 5.6 und 5.7. Benutzen Sie bei Bedarf die Hilfe-Funktion.

Abb. 5.12: Anschluss des Universalprüfkabels und der optionalen Fühlerprüfleitung (Verlängerungsleitung)

Abb. 5.13: Anschluss der Taster-Prüfspitze und der optionalen Fühlerprüfleitung (Verlängerungsleitung)

Schritt 5 Kontrollieren Sie vor dem Beginn der Messung die angezeigten Warnhinweise und den Online-Spannungs-/Klemmenwächter. Wenn alles in Ordnung ist, drücken Sie die TEST-Taste. Nach der Durchführung der Messung erscheinen Ergebnisse zusammen mit dem Symbol BESTANDEN/NICHT BESTANDEN (sofern zutreffend) auf dem Display.

Abb. 5.14: Beispiel eines Ergebnisses der Niederohmmessung

Angezeigte Ergebnisse:

- **R** Hauptergebnis der Niederohmmessung (Mittel der Ergebnisse R+ und R-)
- R+Teilergebnis der Niederohmmessung mit positiver Spannung an Klemme L
- **R-** Teilergebnis der Niederohmmessung mit positiver Spannung an Klemme N.

Das angezeigte Messergebnis, falls gewünscht, speichern. Siehe Kapitel 6.1 für weitere Informationen über Einstellfunktionen und speichern von Messergebnissen (nur MI3102).

Achtung:

- Die Niederohmmessung darf nur an stromlosen Objekten durchgeführt werden!
- Das Pr
 üfergebnis kann durch Parallelimpedanzen oder transiente Str
 öme beeinflusst werden.

Hinweis:

So führen Sie die Durchgangsprüfung durch:

Schritt 1 Wählen Sie mit dem Funktionswahlschalter die Funktion **Continuity** (Durchgang). Benutzen Sie zur Auswahl der Funktion **Durchgang** die Tasten ▲/▼. Folgendes Menü wird eingeblendet:

Abb. 5.15: Durchgangsmessmenü Schließen Sie das Prüfkabel an das Eurotest-Gerät an.

- Schritt 2 Stellen Sie folgenden Grenzwert ein:
 - Widerstandsobergrenze

Abb. 5.16: Anschluss des Universalprüfkabels

Abb. 5.17: Anschluss der Taster-Prüfspitze

 Schritt 4 Kontrollieren Sie vor dem Beginn der Messung die angezeigten Warnhinweise und den Online-Spannungs-/Klemmenwächter. Wenn alles in Ordnung ist, drücken Sie die TEST-Taste, um die Messung zu starten. Das tatsächliche Messergebnis mit der Anzeige BESTANDEN/NICHT BESTANDEN (sofern zutreffend) wird während der Messung auf dem Display eingeblendet.

> Um die Messung jederzeit anzuhalten, drücken Sie die TEST-Taste erneut. Das letzte Messergebnis wird zusammen mit der Anzeige BESTANDEN/NICHT BESTANDEN (sofern zutreffend) angezeigt:

Abb. 5.18: Beispiel eines Ergebnisses der Durchgangsmessung Angezeigtes Ergebnis: **R** Durchgangswiderstand

Das angezeigte Messergebnis, falls gewünscht, speichern. Siehe Kapitel 6.1 für weitere Informationen über Einstellfunktionen und speichern von Messergebnissen (nur MI3102).

Achtung:

Die Durchgangswiderstandsmessung darf nur an stromlosen Objekten durchgeführt werden!

Hinweis:

- Kompensieren Sie vor Durchführung der Durchgangswiderstandsmessung bei Bedarf den Prüfleitungswiderstand. Die Kompensation wird mit der Niederohmmessfunktion durchgeführt.

5.4 Prüfung von Fehlerstrom-Schutzeinrichtungen (RCD)

Bei der Prüfung von Fehlerstrom-Schutzeinrichtungen können folgende Unterfunktionen durchgeführt werden:

- Berührungsspannungsmessung
- Auslösezeitmessung
- Auslösestrommessung
- Messung des Fehlerschleifenwiderstands
- □ Fehlerstrom-Automatikprüfung

Generell können folgende Parameter und Grenzwerte für die Prüfung von Fehlerstrom-Schutzeinrichtungen eingestellt werden:

- Grenzwert der Berührungsspannung
- Nenn-Auslösedifferenzstrom der Fehlerstrom-Schutzeinrichtung
- Multiplikator des Nenn-Auslösedifferenzstroms der Fehlerstrom-Schutzeinrichtung
- Typ der Fehlerstrom-Schutzeinrichtung
- Anfangspolarität des Prüfstroms

5.4.1 Grenzwert der Berührungsspannung

Für normale Wohnbereiche ist die sichere Berührungsspannung auf 50 VAC begrenzt. In speziellen Umgebungen (Krankenhäuser, Nassbereiche etc.) sind Berührungsspannungen bis 25 VAC zulässig.

Der Berührungsspannungsgrenzwert kann nur in der Funktion **Contact voltage** (Berührungsspannung) eingestellt werden!

5.4.2 Nenn-Auslösedifferenzstrom

Der Nennfehlerstrom ist der Nennauslösestrom der Fehlerstrom-Schutzeinrichtung. Folgende Strombemessungen für Fehlerstrom-Schutzeinrichtungen können eingestellt werden: 10 mA, 30 mA, 100 mA, 300 mA, 500 mA und 1000 mA.

5.4.3 Multiplikator des Nennfehlerstroms

Der ausgewählte Nenndifferenzstrom kann mit 0,5, 1, 2 oder 5 multipliziert werden.

5.4.4 Typ der Fehlerstrom-Schutzeinrichtung und Anfangspolarität des Prüfstroms

Das Eurotest-Instrument ermöglicht die Prüfung allgemeiner (unverzögerter) und selektiver (verzögerter, mit S gekennzeichneter) Fehlerstrom-Schutzeinrichtungen, die geeignet sind für:

- □ Fehlerwechselstrom (Typ AC, gekennzeichnet mit dem Symbol →)
- Pulsierenden Fehlergleichstrom (Typ A, gekennzeichnet mit dem Symbol ~)
Der Prüfstrom kann mit der positiven Halbwelle bei 0° oder mit der negativen Halbwelle bei 180° gestartet werden.

Abb. 5.19: Prüfstrom gestartet mit positiver oder negativer Halbwelle

5.4.5 Prüfung selektiver (verzögerter) Fehlerstrom-Schutzeinrichtungen

Selektive Fehlerstrom-Schutzeinrichtungen zeigen eine verzögerte Ansprechcharakteristik. Die Auslöseleistung wird aufgrund der Vorladung während der Berührungsspannungsmessung beeinflusst. Um die Vorladung zu eliminieren, wird eine Verzögerungszeit von 30 s vor Durchführung der Auslöseprüfung eingefügt.

5.4.6 Berührungsspannung

Leckstrom, der zum Schutzleiteranschluss fließt, verursacht einen Spannungsabfall über den Erdungswiderstand, der Berührungsspannung genannt wird. Diese Spannung liegt an allen zugänglichen am Schutzleiteranschluss angeschlossenen Teilen an und sollte unter der Sicherheitsgrenzspannung liegen. Die Berührungsspannung wird ohne Auslösung der Fehlerstrom-Schutzeinrichtung gemessen. R_L ist ein Fehlerschleifenwiderstand und wird wie folgt berechnet:

Die angezeigte Berührungsspannung bezieht sich auf den Bemessungsdifferenzstrom der Fehlerstrom-Schutzeinrichtung und wird aus Sicherheitsgründen mit einem Faktor multipliziert. Tabelle 5.1 beschreibt die Berechnung der Berührungsspannung.

Fehlerstrom- Schutzgeräte	Berührungsspannung Uc
typ	
∽⇒G	Uc ∝ 1.05×L
G	
∽⊸S	
∽S	$00 \approx 1,00 \times 2 \times I_{\Delta N}$
∼–G	
~G	$UC \propto 1,03 \times \sqrt{1} \times I_{\Delta N}$
~-S	
~~S	$UC \propto 1,00 \times 1 \times \sqrt{1} \times I_{\Delta N}$

Tabelle 5.1: Beziehung zwischen Uc ι	und I _{DN}
--------------------------------------	---------------------

Weitere Informationen über die Messung der Berührungsspannung finden Sie im Metrel-Handbuch "Measurements on electric installations in theory and practice" (Messungen an elektrischen Anlagen in Theorie und Praxis).

So wird die Messung der Berührungsspannung durchgeführt:

 Schritt 1 Wählen Sie mit dem Funktionswahlschalter die Funktion RCD (Fehlerstrom-Schutzeinrichtung). Benutzen Sie zur Auswahl der Funktion Contact voltage (Berührungsspannung) die Tasten ▲/✔. Folgendes Menü wird eingeblendet:

Abb. 5.20: Menü zur Berührungsspannungsmessung Schließen Sie das Prüfkabel an das Eurotest-Gerät an.

Schritt 2 Stellen Sie folgende Messparameter und Grenzwerte ein:

- Nennfehlerstrom
- **u** Typ der Fehlerstrom-Schutzeinrichtung
- Berührungsspannungsgrenzwert
- **Schritt 3** Befolgen Sie zur Durchführung der Berührungsspannungsmessung den Anschlussplan in Abb. 5.15. Benutzen Sie bei Bedarf die **Hilfe**-Funktion.

 Abb. 5.21: Anschluss des Steckerpr
üfkabels bzw. des Universalpr
üfkabels
 Schritt 4 Kontrollieren Sie vor Beginn der Messung die angezeigten Warnhinweise und den Online-Spannungs-/Klemmenwächter. Wenn alles in Ordnung ist, dr
ücken Sie die TEST-Taste. Nach Durchf
ührung werden die Messergebnisse mit dem Symbol BESTANDEN/NICHT BESTANDEN auf dem Display angezeigt.

Abb. 5.22: Beispiel für die Ergebnisse einer Berührungsspannungsmessung Angezeigte Ergebnisse:

U Berührungsspannung

RI Fehlerschleifenwiderstand

Das angezeigte Messergebnis falls gewünscht speichern. Siehe Kapitel 6.1 für weitere Informationen über Einstellfunktionen und speichern von Messergebnissen (nur MI3102).

Hinweis:

- Die Parametereinstellungen werden bei den anderen Fehlerstrom-Schutz-Funktionen beibehalten.
- Die Messung der Berührungsspannung löst normalerweise die Fehlerstrom-Schutzeinrichtung nicht aus. Allerdings kann die Auslösegrenze infolge von Leckströmen überschritten werden, die zum PE-Schutzleiter oder über die kapazitive Verbindung zwischen den Leitern L und PE fließen.
- Die Funktion zur Messung des Fehlerschleifenwiderstands braucht länger, bietet aber eine höhere Genauigkeit des Messergebnisses für den Fehlerschleifenwiderstand (im Vergleich mit dem Teilergebnis R_L bei der Funktion zur Messung der Berührungsspannung).

5.4.7 Auslösezeit

Die Messung der Auslösezeit wird zur Überprüfung der Wirksamkeit der Fehlerstrom-Schutzeinrichtung benutzt. Dies wird durch eine Prüfung erreicht, die eine entsprechende Fehlerbedingung simuliert. Die Auslösezeiten unterscheiden sich zwischen den Standards, siehe nachfolgende Auflistung.

	½×I _{∆N} *)	ΔN	$2 \times I_{\Delta N}$	5×Ι _{ΔΝ}
Allgemeine	t_{Δ} < 300 ms	t_{Δ} < 300 ms	t_{Δ} < 150 ms	t_{Δ} < 40 ms
(unverzögerte)				
Fehlerstrom-				
Schutzeinr.				
Selektive	t _∆ < 500 ms	130 ms < t∆ <	60 ms < t _∆ <	50 ms < t $_{\Delta}$ <
(verzögerte)		500 ms	200 ms	150 ms
Fehlerstrom-				
Schutzeinr.				

Auslösezeiten nach EN 61008 / EN 61009:

Auslösezeiten nach IEC 60364-4-41:

	$1/_2 \times I_{\Delta N}^{*)}$	$I_{\Delta N}$	$2 \times I_{\Delta N}$	$5 \times I_{\Delta N}$
Allgemeine	t _∆ < 999 ms	t _∆ < 999 ms	t _∆ < 150 ms	t_{Δ} < 40 ms
(unverzögerte)				
Fehlerstrom-				
Schutzeinr.				
Selektive	t _∆ < 999 ms	130 ms < t∆ <	60 ms < t _∆ <	50 ms < t _∆ <
(verzögerte)		999 ms	200 ms	150 ms
Fehlerstrom-				
Schutzeinr.				

Auslösezeiten nach BS 7671:

	½×I _{∆N} *)	$I_{\Delta N}$	$2 \times I_{\Delta N}$	5×Ι _{ΔΝ}
Allgemeine (unverzögerte) Fehlerstrom- Schutzeinr.	t _∆ < 1999 ms	t _∆ < 300 ms	t _∆ < 150 ms	t_{Δ} < 40 ms
Selektive (verzögerte) Fehlerstrom- Schutzeinr.	t _∆ < 1999 ms	130 ms < t _∆ < 500 ms	60 ms < t _∆ < 200 ms	50 ms < t _∆ < 150 ms

^{*)} Der Prüfstrom $\frac{1}{2} \times I_{\Delta N}$ kann die Fehlerstrom-Schutzeinrichtungen nicht auslösen.

Weitere Informationen über die Messung der Auslösezeit finden Sie im Metrel-Handbuch "Measurements on electric installations in theory and practice" (Messungen an elektrischen Anlagen in Theorie und Praxis).

So führen Sie die Messung der Auslösezeit durch:

Schritt 1Wählen Sie mit dem Funktionswahlschalter die Funktion RCD
(Fehlerstrom-Schutzeinrichtung). Benutzen Sie zur Auswahl der Funktion
RCD t (Auslösezeit der Fehlerstrom-Schutzeinrichtung) die Tasten

A/Y. Folgendes Menü wird eingeblendet:

Abb. 5.23: Menü zur Auslösezeitmessung Schließen Sie das Prüfkabel an das Eurotest-Gerät an.

Schritt 2 Stellen Sie folgende Messparameter ein:

- Nenn-Auslösedifferenzstrom
- Multiplikator des Nenn-Auslösedifferenzstroms
- Typ der Fehlerstrom-Schutzeinrichtung und
- Anfangspolarität des Prüfstroms
- **Schritt 3** Befolgen Sie den Anschlussplan in Abb. 5.15 (siehe Abschnitt **Berührungsspannung**), um die Messung der Auslösezeit durchzuführen.
- Schritt 4 Kontrollieren Sie vor dem Beginn der Messung die angezeigten Warnhinweise und den Online-Spannungs-/Klemmenwächter. Wenn alles in Ordnung ist, drücken Sie die TEST-Taste. Nach Durchführung werden die Messergebnisse mit dem Symbol BESTANDEN/NICHT BESTANDEN auf dem Display angezeigt.

Abb. 5.24: Beispiel für ein Ergebnis der Auslösezeitmessung

Angezeigte Ergebnisse: t..... Auslösezeit Uc Berührungsspannung

Das angezeigte Messergebnis falls gewünscht speichern. Siehe Kapitel 6.1 für weitere Informationen über Einstellfunktionen und speichern von Messergebnissen (nur MI 3102).

Hinweis:

- Die Parametereinstellungen werden bei den anderen Fehlerstrom-Schutz-Funktionen beibehalten.
- Die Auslösezeitmessung wird nur durchgeführt, wenn die Berührungsspannung bei Nenndifferenzstrom geringer als der eingestellte Grenzwert der Berührungsspannung ist.
- Die Messung der Berührungsspannung im Vorfeld der Prüfung löst normalerweise die Fehlerstrom-Schutzeinrichtung nicht aus. Allerdings kann die Auslösegrenze infolge von Leckströmen überschritten werden, die zum PE-Schutzleiter, oder über die kapazitive Verbindung zwischen den Leitern L und PE fließen.

5.4.8 Auslösestrom

Bei der Bewertung der Fehlerstrom-Schutzeinrichtung wird ein stetig ansteigender Fehlerstrom für die Messung benutzt. Nach Beginn der Messung erhöht sich der durch das Gerät erzeugte Prüfstrom stetig beginnend bei $0,2 \times I_{\Delta N}$ bis $1,1 \times I_{\Delta N}$ (bzw. bis $1,5 \times I_{\Delta N}$ bei pulsierenden Gleichströmen als Fehlerstrom), bis die Fehlerstrom-Schutzeinrichtung auslöst.

Weitere Informationen über die Messung des Auslösestroms finden Sie im Metrel-Handbuch "Measurements on electric installations in theory and practice" (Messungen an elektrischen Anlagen in Theorie und Praxis).

So führen Sie die Messung des Auslösestroms durch:

Schritt 1 Wählen Sie mit dem Funktionswahlschalter die Funktion RCD (Fehlerstrom-Schutzeinrichtung). Benutzen Sie zur Auswahl der Funktion Trip-out current (Auslösestrom) die Tasten ▲/✔. Folgendes Menü wird eingeblendet:

- 30mF	A A ~G
	_
	. <u>_</u> mA
<u>V</u>	ms
तस्क	
x	
	30mf

Abb. 5.25: Menü zur Auslösestrommessung Schließen Sie das Prüfkabel an das Eurotest-Gerät an.

- Schritt 2 Mit den Cursortasten können folgende Parameter bei dieser Messung eingestellt werden:
 - Nennfehlerstrom

- Typ der Fehlerstrom-Schutzeinrichtung
- Anfangspolarität des Prüfstroms
- **Schritt 3** Befolgen Sie den Anschlussplan in Abb. 5.15 (siehe Abschnitt **Berührungsspannung**), um die Messung des Auslösestroms durchzuführen. Benutzen Sie bei Bedarf die **Hilfe**-Funktion.
- Schritt 4 Kontrollieren Sie vor dem Beginn der Messung die angezeigten Warnhinweise und den Online-Spannungs-/Klemmenwächter. Wenn alles in Ordnung ist, drücken Sie die TEST-Taste. Nach Durchführung werden die Messergebnisse mit dem Symbol BESTANDEN/NICHT BESTANDEN auf dem Display angezeigt.

Abb. 5.26: Beispiel für ein Ergebnis der Auslösestrommessung Angezeigte Ergebnisse:

I_D..... Auslösestrom U_{Ci}...... Berührungsspannung tI..... Auslösezeit

Das angezeigte Messergebnis, falls gewünscht, speichern. Siehe Kapitel 6.1 für weitere Informationen über Einstellfunktionen und speichern von Messergebnissen (nur MI3102).

Hinweis:

- Die Parametereinstellungen werden bei den anderen Fehlerstrom-Schutz-Funktionen beibehalten.
- Die Auslösezeitmessung wird nur durchgeführt, wenn die Berührungsspannung bei Nenndifferenzstrom geringer als der eingestellte Grenzwert der Berührungsspannung ist.
- Die Messung der Berührungsspannung im Vorfeld der Prüfung löst normalerweise die Fehlerstrom-Schutzeinrichtung nicht aus. Allerdings kann die Auslösegrenze infolge von Leckströmen überschritten werden, die zum PE-Schutzleiter oder über die kapazitive Verbindung zwischen den Leitern L und PE fließen.

5.4.9 Automatikprüfung

Zweck dieser Funktion ist die Durchführung einer vollständigen Prüfung der Fehlerstrom-Schutzeinrichtung und die Messung dazugehöriger Parameter (Berührungsspannung, Fehlerschleifenwiderstand und Auslösezeit bei verschiedenen Fehlerströmen) mit einer vom Instrument gesteuerten Abfolge automatischer Prüfungen. Wenn ein falscher Parameter während der automatischen Prüfung bemerkt wird, muss die Einzelprüfung des Parameters zur weiteren Untersuchung benutzt werden.

So führen Sie die automatische Prüfung der Fehlerstrom-Schutzeinrichtung durch:

Schritt 1 Wählen Sie mit dem Funktionswahlschalter die Funktion RCD (Fehlerstrom-Schutzeinrichtung). Benutzen Sie zur Auswahl der Funktion AUTO die Tasten A/√. Folgendes Menü wird eingeblendet:

Abb. 5.27: Menü zur automatischen Prüfung der Fehlerstrom-Schutzeinrichtung Schließen Sie das Prüfkabel an das Eurotest-Gerät an.

Schritt 2 Stellen Sie folgende Messparameter ein:

- Nenn-Auslösedifferenzstrom
- Typ der Fehlerstrom-Schutzeinrichtung
- **Schritt 3** Befolgen Sie den Anschlussplan in Abb. 5.15 (siehe Abschnitt **Berührungsspannung**), um die automatische Prüfung der Fehlerstrom-Schutzeinrichtung durchzuführen. Benutzen Sie bei Bedarf die **Hilfe**-Funktion.
- **Schritt 4** Kontrollieren Sie vor dem Beginn der Messung die angezeigten Warnhinweise und den Online-Spannungs-/Klemmenwächter. Wenn alles in Ordnung ist, drücken Sie die TEST-Taste. Die Automatikprüfsequenz beginnt wie folgt abzulaufen:
 - 1. Auslösezeitmessung mit folgenden Messparametern:
 - Prüfstrom $\frac{1}{2} \times I_{\Delta N}$
 - Prüfstrom beginnt mit positiver Halbwelle bei 0°

Normalerweise löst die Messung die Fehlerstrom-Schutzeinrichtung nicht aus. Folgendes Menü wird eingeblendet:

Abb. 5.28: Ergebnisse des Schritts 1 der RCD-Automatikprüfung

Nach Durchführung des Schritts 1 fährt die RCD-Automatikprüfsequenz automatisch mit Schritt 2 fort.

- 2. Auslösezeitmessung mit folgenden Messparametern:
 - □ Prüfstrom ½×I_{∆N}
 - Prüfstrom beginnt mit negativer Halbwelle bei 180°

Normalerweise löst die Messung die Fehlerstrom-Schutzeinrichtung nicht aus. Folgendes Menü wird eingeblendet:

Abb. 5.29: Ergebnisse des Schritts 2 der RCD-Automatikprüfung Nach Durchführung des Schritts 2 fährt die RCD-Automatikprüfsequenz automatisch mit Schritt 3 fort.

- 3. Auslösezeitmessung mit folgenden Messparametern:
 - $\square \quad Pr \ddot{u} fstrom I_{\Delta N}$
 - Prüfstrom beginnt mit positiver Halbwelle bei 0°

Normalerweise löst die Messung eine Fehlerstrom-Schutzeinrichtung innerhalb der zulässigen Zeit aus. Folgendes Menü wird eingeblendet:

Abb. 5.30: Ergebnisse des Schritts 3 der RCD-Automatikprüfung Nach Wiedereinschaltung der Fehlerstrom-Schutzeinrichtung geht die Automatikprüfsequenz automatisch zu Schritt 4 über.

- 4. Auslösezeitmessung mit folgenden Messparametern:
 - $\Box \quad \text{Prüfstrom } I_{\Delta N}$
 - Prüfstrom beginnt mit negativer Halbwelle bei 180°

Normalerweise löst die Messung eine Fehlerstrom-Schutzeinrichtung innerhalb der zulässigen Zeit aus. Folgendes Menü wird eingeblendet:

AUTO	30mA 🗠	∀G
t1:>300 t2:>300 t3: 18 Uc: 0.4)ms t4:)ms t5: 3ms t6: W	18ms ms ms

Abb. 5.31: Ergebnisse des Schritts 4 der RCD-Automatikprüfung Nach Wiedereinschaltung der Fehlerstrom-Schutzeinrichtung geht die Automatikprüfsequenz automatisch zu Schritt 5 über.

- 5. Auslösezeitmessung mit folgenden Messparametern:
 - Prüfstrom $5 \times I_{\Delta N}$
 - Prüfstrom beginnt mit positiver Halbwelle bei 0°

Normalerweise löst die Messung eine Fehlerstrom-Schutzeinrichtung innerhalb der zulässigen Zeit aus. Folgendes Menü wird eingeblendet:

Abb. 5.32: Ergebnisse des Schritts 5 der RCD-Automatikprüfung Nach Wiedereinschaltung der Fehlerstrom-Schutzeinrichtung geht die Automatikprüfsequenz automatisch zu Schritt 6 über.

- 6. Auslösezeitmessung mit folgenden Messparametern:
 - **D** Prüfstrom $5 \times I_{\Delta N}$
 - Prüfstrom beginnt mit negativer Halbwelle bei 180°

Normalerweise löst die Messung eine Fehlerstrom-Schutzeinrichtung innerhalb der zulässigen Zeit aus. Folgendes Menü wird eingeblendet:

Abb. 5.33: Ergebnisse des Schritts 6 der RCD-Automatikprüfung Angezeigte Ergebnisse:

- **t1**..... Auslösezeit aus Schritt 1 ($\frac{1}{2} \times I_{\Delta N}$, 0°)
- t2..... Auslösezeit aus Schritt 2 (½× $I_{\Delta N}$, 180°)
- **t3**..... Auslösezeit aus Schritt 3 ($I_{\Delta N}$, 0°)

t4..... Auslösezeit aus Schritt 4 ($I_{\Delta N}$, 180°)

t5..... Auslösezeit aus Schritt 5 ($5 \times I_{\Delta N}$, 0°)

t6..... Auslösezeit aus Schritt 6 ($5 \times I_{\Delta N}$, 180°)

Uc Berührungsspannung

Das angezeigte Messergebnis, falls gewünscht, speichern. Siehe Kapitel 6.1 für weitere Informationen über Einstellfunktionen und speichern von Messergebnissen (nur MI3102).

Hinweis:

- Die Messung der Berührungsspannung im Vorfeld der Prüfung löst normalerweise die Fehlerstrom-Schutzeinrichtung nicht aus. Allerdings kann die Auslösegrenze infolge von Leckströmen überschritten werden, die zum PE-Schutzleiter oder über die kapazitive Verbindung zwischen den Leitern L und PE fließen.
- Die Automatikpr
 üfsequenz h
 ält an, wenn die Ausl
 ösezeit au
 ßerhalb der zul
 ässigen Zeit liegt.

5.5 Fehlerschleifenwiderstand und unbeeinflusster Fehlerstrom

Es stehen drei Fehlerschleifenwiderstand Unterfunktionen zur Verfügung:

- Die R SCHLEIFE Unterfunktion f
 ür Messungen in Systemen ohne Fehlerstrom-Schutzeinrichtungen.
- Die Rs(rcd) Unterfunktion f
 ür Messungen in Systemen mit installierten Fehlerstrom-Schutzeinrichtungen (mit Nenn-Auslösedifferenzstrom 30mA oder grösser)
- Die Rs(rcd10mA) Unterfunktion f
 ür Messungen in Systemen mit installierten Fehlerstrom-Schutzeinrichtungen (mit Nenn-Auslösedifferenzstrom 10mA)

Weitere Informationen über die Messung des Fehlerschleifenwiderstands finden Sie im Metrel-Handbuch "*Measurements on electric installations in theory and practice"* (Messungen an elektrischen Anlagen in Theorie und Praxis).

5.5.1 Fehlerschleifenwiderstand

Der Schleifenwiderstand ist der Widerstand innerhalb der Fehlerschleife, wenn ein Kurzschluss an freiliegenden leitenden Teilen auftritt (leitende Verbindung zwischen Phasenleiter und Schutzleiter). Zur Messung des Schleifenwiderstands benutzt das Instrument einen Prüfstrom in Höhe von 2,5 A.

Der unbeeinflusste Fehlerstrom wird auf der Grundlage des gemessenen Widerstands wie folgt berechnet:

mit

 $\begin{array}{ll} U_n & \\ 115 \ V & (100 \ V \leq U_{L\text{-PE}} < 160 \ V) \\ 230 \ V & (160 \ V \leq U_{L\text{-PE}} \leq 264 \ V) \end{array}$

Aufgrund der verschiedenen Definitionen des unbeeinflussten Fehlerstroms I_{PFC} in verschiedenen Ländern kann der Benutzer den Skalierungsfaktor im Menü **Einstellungen** auswählen (siehe Abschnitt 4.5.3).

So führen Sie die Messung des Fehlerschleifenwiderstands durch:

Schritt 1Wählen Sie mit dem Funktionswahlschalter die Funktion Rschleife(Fehlerschleifenwiderstand). Benutzen Sie zur Auswahl der UnterfunktionR SCHLEIFE die Tasten A/V. Folgendes Menü wird eingeblendet:

Abb. 5.34: Menü zur Messung des Schleifenwiderstands Schließen Sie das Prüfkabel an das Eurotest-Gerät an.

Schritt 2 Stellen Sie folgende Messparameter ein:

- Sicherungstyp
- Strombemessung der Sicherung
- Auslösezeit der Sicherung

Anhang A enthält eine vollständige Auflistung der Sicherungssockel.

Schritt 3 Befolgen Sie zur Durchführung der Messung des Fehlerschleifenwiderstands den Anschlussplan in Abb. 5.31. Benutzen Sie bei Bedarf die **Hilfe**-Funktion.

Abb. 5.35 Anschluss des Steckerkabels und des Universalprüfkabels

Schritt 4 Kontrollieren Sie vor dem Beginn der Messung die angezeigten Warnhinweise und den Online-Spannungs-/Klemmenwächter. Wenn alles in Ordnung ist, drücken Sie die TEST-Taste. Nach Durchführung der Messung erscheinen die Ergebnisse zusammen mit dem Symbol BESTANDEN/NICHT BESTANDEN (sofern zutreffend) auf dem Display.

R SC	- *F	*8	*ms
	Ø 42	2	
R:	0.16	- 34	
ISC:	548H		
0	TEST	E 230 C	E N
	\checkmark	L 23	

Abb. 5.36: Beispiel eines Ergebnisses der Messung des Fehlerschleifenwiderstands

Angezeigte Ergebnisse:

R Leitungswiderstand I_{sc} unbeeinflusster Kurzschlussstrom Lim Untergrenze des unbeeinflussten Kurzschlussstromes Das angezeigte Messergebnis, falls gewünscht, speichern. Siehe Kapitel 6.1 für weitere Informationen über Einstellfunktionen und speichern von Messergebnissen (nur MI 3102).

Hinweis:

- Die Pr
 üfklemmen L und N werden automatisch umgepolt, wenn die Pr
 üfleitungen L/L1 und N/L2 (Universalpr
 üfkabel) umgekehrt angeschlossen werden, wenn die Klemmen an der gepr
 üften Wandsteckdose vertauscht sind, oder wenn der Pr
 üfstecker umgedreht wird.
- Die angegebene Genauigkeit der geprüften Parameter ist nur gültig, wenn die Netzspannung während der Messung stabil ist.
- Der untere Grenzwert des unbeeinflussten Kurzschlussstromes hängt vom Sicherungstyp, von der Strombemessung und der Auslösezeit der Sicherung sowie vom I_{PSC}-Skalierungsfaktor ab.
- Die Messung des Fehlerschleifenwiderstands löst Fehlerstrom-Schutzeinrichtungen aus.

5.5.2 Fehlerschleifenwiderstand (Funktion Rs)

Die **Rs(rcd)** Unterfunktion ist für Messungen in Systemen mit installierten Fehlerstrom-Schutzeinrichtungen geeignet. Der Messstrom ist klein genug um das Auslösen der Fehlerstrom-Schutzeinrichtungen zu vermeiden. Das moderne Messverfahren ermöglicht trotz den niedrigen Messsignalen stabile und zuverlässige Ergebnisse.

Der unbeeinflusste Fehlerstrom wird auf der Grundlage des gemessenen Widerstands wie folgt berechnet:

mit

 $\begin{array}{ll} U_n & \\ 115 \text{ V} & (100 \text{ V} \leq U_{\text{L-PE}} < 160 \text{ V}) \\ 230 \text{ V} & (160 \text{ V} \leq U_{\text{L-PE}} \leq 264 \text{ V}) \end{array}$

Aufgrund der verschiedenen Definitionen des unbeeinflussten Fehlerstroms I_{PFC} in verschiedenen Ländern kann der Benutzer den Skalierungsfaktor im Menü **Einstellungen** auswählen (siehe Abschnitt 4.5.3).

So führen Sie die Messung des Fehlerschleifenwiderstands (Rs) durch:

Schritt 1 Wählen Sie mit dem Funktionswahlschalter die Funktion R_{SCHLEIFE} (Fehlerschleifenwiderstand). Benutzen Sie zur Auswahl der Unterfunktionen Rs(rcd) oder Rs(rcd10mA) die Tasten A/Y. Eines des folgendes Menüs wird eingeblendet:

Abb. 5.9: Menüs zur Messung des Schleifenwiderstands (Rs) Schließen Sie das Prüfkabel an das Eurotest-Gerät an.

Schritt 2 Stellen Sie folgende Messparameter ein:

- □ Sicherungstyp
- Strombemessung der Sicherung
- Auslösezeit der Sicherung

Anhang A enthält eine vollständige Auflistung der Sicherungssockel.

- **Schritt 3** Befolgen Sie zur Durchführung der Messung des Fehlerschleifenwiderstands (Rs) den Anschlussplan in Abb. 5.35. Benutzen Sie bei Bedarf die **Hilfe**-Funktion.
- Schritt 4 Kontrollieren Sie vor Beginn der Messung die angezeigten Warnhinweise und den Online-Spannungs-/Klemmenwächter. Wenn alles in Ordnung ist, drücken Sie die TEST-Taste. Nach Durchführung der Messung erscheinen die Ergebnisse zusammen mit dem Symbol BESTANDEN/NICHT BESTANDEN (sofern zutreffend) auf dem Display.

Abb. 5.38: Beispiel eines Ergebnisses der Messung des Fehlerschleifenwiderstands (Rs)

Angezeigte Ergebnisse:

R Leitungswiderstand

Isc unbeeinflusster Kurzschlussstrom

Lim Untergrenze des unbeeinflussten Kurzschlussstromes

Das angezeigte Messergebnis, falls gewünscht, speichern. Siehe Kapitel 6.1 für weitere Informationen über Einstellfunktionen und speichern von Messergebnissen (nur MI 3102).

Hinweis:

- Die Messung des Fehlerschleifenwiderstands (Rs) löst normalerweise die Fehlerstrom-Schutzeinrichtung nicht aus. Allerdings kann die Auslösegrenze infolge von Leckströmen überschritten werden, die zum PE-Schutzleiter oder über die kapazitive Verbindung zwischen den Leitern L und PE fließen.
- Die Rs(rcd) Messung bietet eine bessere Genauigkeit, kann aber Fehlerstrom-Schutzeinrichtungen mit Nenn-Auslösedifferenzstrom von 10mA auslösen.
- Die angegebene Genauigkeit der geprüften Parameter ist nur gültig, wenn die Netzspannung während der Messung stabil ist.

5.6 Leitungswiderstand und unbeeinflusster Kurzschlussstrom

Der Leitungswiderstand ist der Widerstand innerhalb der Stromschleife, wenn ein Kurzschluss mit dem Neutralleiter auftritt (leitende Verbindung zwischen Phasenleiter und Neutralleiter im Einphasennetz oder zwischen zwei Phasenleitern im Dreiphasennetz). Zur Durchführung der Messung des Leitungswiderstands wird ein Prüfstrom in Höhe von 2,5 A verwendet.

Der unbeeinflusste Kurzschlussstrom wird wie folgt berechnet:

mit

 $\begin{array}{ll} U_n \\ 115 \ V & (100 \ V \leq U_{L\text{-PE}} < 160 \ V) \\ 230 \ V & (160 \ V \leq U_{L\text{-PE}} \leq 264 \ V) \\ 400 \ V & (264 \ V < U_{L\text{-PE}} \leq 440 \ V) \end{array}$

Aufgrund der verschiedenen Definitionen des unbeeinflussten Kurzschlussstroms I_{PSC} in verschiedenen Ländern kann der Benutzer den Skalierungsfaktor im Menü **Einstellungen** auswählen (siehe Abschnitt 4.5.3).

Weitere Informationen über die Messung des Leitungswiderstands finden Sie im Metrel-Handbuch "Measurements on electric installations in theory and practice" (Messungen an elektrischen Anlagen in Theorie und Praxis).

So führen Sie die Messung des Leitungswiderstands durch:

Schritt 1 Wählen Sie mit dem Funktionswahlschalter die Funktion **R**_{LINE} (Leitungswiderstand). Folgendes Menü wird eingeblendet:

R LE	IT NV	16A	0.4s
R:		_Ω	
Isc:	A	Lim:1	07.4A
	TEST	€ <10	PE N ● <10 ●

Abb. 5.9: Menü zur Messung des Leitungswiderstands

Schließen Sie das Prüfkabel an das Eurotest-Gerät an.

Schritt 2 Stellen Sie folgende Messparameter ein:

- □ Sicherungstyp
- Strombemessung der Sicherung
- Auslösezeit der Sicherung

Anhang A enthält eine vollständige Auflistung der Sicherungssockel.

Schritt 3 Befolgen Sie zur Durchführung der Messung des Phasen-Neutral- bzw. Phasen-Phasen-Leitungswiderstands den Anschlussplan in Abb. 5.34. Benutzen Sie bei Bedarf die **Hilfe**-Funktion.

 Abb. 5.40: Messung des Phasen-Neutral- bzw. Phasen-Phasen-Leitungswiderstands
 Schritt 4 Kontrollieren Sie vor Beginn der Messung die angezeigten Warnhinweise und den Online-Spannungs-/Klemmenwächter. Wenn alles in Ordnung ist, drücken Sie die TEST-Taste. Nach der Durchführung der Messung erscheinen Ergebnisse zusammen mit dem Symbol BESTANDEN/NICHT BESTANDEN (sofern zutreffend) auf dem Display.

- *Abb. 5.41: Beispiel eines Ergebnisses der Leitungswiderstandsmessung* Angezeigte Ergebnisse:
 - R Leitungswiderstand

Isc unbeeinflusster Kurzschlussstrom

Lim Untergrenze des unbeeinflussten Kurzschlussstromes

Das angezeigte Messergebnis, falls gewünscht, speichern. Siehe Kapitel 6.1 für weitere Informationen über Einstellfunktionen und speichern von Messergebnissen (nur MI3102).

Hinweis:

- Der untere Grenzwert des unbeeinflussten Kurzschlussstromes hängt vom Sicherungstyp, von der Strombemessung und der Auslösezeit der Sicherung sowie vom I_{PSC}-Skalierungsfaktor ab.
- Die angegebene Genauigkeit der geprüften Parameter ist nur gültig, wenn die Netzspannung während der Messung stabil ist.

5.7 Phasenfolgeprüfung

In der Praxis haben wir es oft mit dem Anschluss dreiphasiger Lasten (Motore und andere elektromechanische Maschinen) an Dreiphasennetze zu tun. Einige Lasten (Ventilatoren, Förderbänder, Motore, elektromechanische Maschinen etc.) erfordern eine bestimmte Phasendrehung, und einige können sogar beschädigt werden, wenn die Drehung umgekehrt ist. Darum sollte vor dem Anschluss eine Prüfung der Phasendrehung erfolgen.

Weitere Informationen über die Phasenfolgeprüfung finden Sie im Metrel-Handbuch "Measurements on electric installations in theory and practice" (Messungen an elektrischen Anlagen in Theorie und Praxis).

So prüfen Sie die Phasenfolge

Schritt 1 Wählen Sie mit dem Funktionswahlschalter die Funktion **Phase rotation** (Phasendrehung). Folgendes Menü wird eingeblendet:

Abb. 5.42: Menü zur Prüfung der Phasendrehung Schließen Sie das Prüfkabel an das Eurotest-Gerät an.

Schritt 2 Befolgen Sie zur Prüfung der Phasenfolge den Anschlussplan in Abb. 5.37.

Abb. 5.43: Anschluss des Universalprüfkabels und des optionalen Dreiphasenkabels

Schritt 3 Kontrollieren Sie die angezeigten Warnhinweise und den Online-Spannungs-/Klemmenwächter. Die Dauerprüfung läuft. Das tatsächliche Ergebnis wird während der Prüfung auf dem Display angezeigt. Alle Dreiphasenspannungen werden in ihrer Phasenfolge durch die Ziffern 1, 2 und 3 angezeigt.

Abb. 5.44: Beispiel des Prüfergebnisses für die Phasenfolge Angezeigtes Ergebnis: Ph...... Phasenfolge 1.2.3..... richtiger Anschluss 2.3.1..... falscher Anschluss -.-- ungültige Spannungen

Das angezeigte Messergebnis, falls gewünscht, speichern. Siehe Kapitel 6.1 für weitere Informationen über Einstellfunktionen und speichern von Messergebnissen (nur MI3102).

5.8 Spannung und Frequenz

Die Spannungsmessung sollte beim Umgang mit elektrischen Anlagen oft durchgeführt werden (Ausführung verschiedener Messungen und Prüfungen, Suche nach Fehlerstellen etc.). Die Frequenz wird beispielsweise bei der Errichtung einer Netzspannungsquelle gemessen (Leistungstransformator oder einzelner Generator).

So führen Sie die Spannungs- und Frequenzmessung durch:

Schritt 1 Wählen Sie mit dem Funktionswahlschalter die Funktion **Spannung**. Folgendes Menü wird eingeblendet:

Abb. 5.45: Menü für Spannungs- und Frequenzmessung Schließen Sie das Prüfkabel an das Eurotest-Gerät an.

Schritt 2 Befolgen Sie zur Durchführung der Spannungs- und Frequenzmessung den Anschlussplan in Abb. 5.40.

Abb. 5.46: Anschlussplan

Schritt 3 Kontrollieren Sie die angezeigten Warnhinweise und den Online-Spannungs-/Klemmenwächter. Die Dauerprüfung läuft. Das tatsächliche Ergebnis wird während der Messung auf dem Display angezeigt.

Abb. 5.47: Beispiele für Spannungs- und Frequenzmessung Angezeigte Ergebnisse:

UI-n...... Spannung zwischen Phasen- und Neutralleitern **UI-pe**..... Spannung zwischen Phasen- und Schutzleitern **Un-pe**..... Spannung zwischen Neutral- und Schutzleitern

Bei der Prüfung eines Dreiphasennetzes werden folgende Ergebnisse angezeigt:

- U1-2...... Spannung zwischen den Phasen L1 und L2
- U1-3...... Spannung zwischen den Phasen L1 und L3
- U2-3...... Spannung zwischen den Phasen L2 und L3

Das angezeigte Messergebnis, falls gewünscht, speichern. Siehe Kapitel 6.1 für weitere Informationen über Einstellfunktionen und speichern von Messergebnissen.

5.9 Prüfung des Schutzleiteranschlusses

Bei neuen oder angepassten Installationen kann es vorkommen, dass der Schutzleiter mit dem Phasenleiter vertauscht wurde - dies ist eine sehr gefährliche Situation! Darum ist es wichtig, auf Vorhandensein von Phasenspannung am Schutzleiteranschluss zu prüfen.

Diese Prüfung wird vor Prüfungen durchgeführt, bei denen die Netzversorgungsspannung an die Schaltung des Instruments angelegt wird, bzw. bevor die Installation in Betrieb geht.

Weitere Informationen über die Prüfung des Schutzleiteranschlusses finden Sie im Metrel-Handbuch "Measurements on electric installations in theory and practice" (Messungen an elektrischen Anlagen in Theorie und Praxis).

So prüfen Sie den Schutzleiteranschluss

- Schritt 1 Schließen Sie das Prüfkabel an das Instrument an.
- **Schritt 2** Befolgen Sie zur Prüfung des Schutzleiteranschlusses die Anschlusspläne in den Abbildungen 5.42 und 5.43.

Abb. 5.48: Anschluss des Steckerkabels an die Netzsteckdose mit vertauschten L- und PE-Leitern

Abb. 5.49: Anschluss des Universalprüfkabels an Lastanschlussklemmen mit vertauschten L- und PE-Leitern

Schritt 3 Berühren Sie den PE-Prüffühler (TEST-Taste) ein paar Sekunden lang. Wenn der Schutzleiteranschluss an Phasenspannung angeschlossen ist, wird ein Warnhinweis eingeblendet und der Summer des Instruments aktiviert.

Achtung:

 Wenn am geprüften Schutzleiteranschluss Phasenspannung erkannt wird, sofort alle Messungen stoppen und dafür sorgen, dass der Fehler eliminiert wird, bevor Sie weitere Messungen vornehmen.

Hinweis:

- Der Schutzleiteranschluss kann nur in folgenden Stellungen des Funktionswahlschalters gepr
 üft werden: RCD, R_{LOOP} und R_{LINE}.
- Stellen Sie während der Durchführung der Prüfung sicher, dass Sie auf einem potentialgebundenen Fußboden stehen, sonst ist das Prüfergebnis möglicherweise falsch.

5.10 Erdungswiderstand (nur MI 3102)

Das Test- Gerät kann den Erdungswiderstand durch das Messverfahren mit drei Sonden ermitteln. Folgende Hinweise müssen bei der Messung beachtet werden:

- Die Sonde (S) liegt zwischen der Hilfserdersonde (H) und Erdersonde (E), in der sogenannter Referenzebene (siehe Abb. 5.52).
- Der Abstand zwischen der Erdersonde (E) und der Hilfserdersonde (H) soll mindestens 5-mal grösser sein als die Tiefe oder Länge der Erderelektrode (siehe Abb. 5.52).
- Wenn der Erdungswiderstand eines gesamten Erdungssystemen beurteilt wird, hängt der Sondenabstand von der längster Diagonale zwischen individuellen Erdern ab (siehe Abb. 5.53).

Weitere Informationen über die Messung des Erdungswiderstandes finden Sie im Metrel-Handbuch "Measurements on electric installations in theory and practice" (Messungen an elektrischen Anlagen in Theorie und Praxis).

So führen Sie die Erdungsmessung durch:

Schritt 1 Wählen Sie mit dem Funktionswahlschalter die Funktion Erdung. Folgendes Menü wird eingeblendet:

Abb. 5.10: Menü zur Messung des Erdungswiderstandes Schließen Sie die Messleitungen an das Eurotest-Gerät an.

Schritt 2 Stellen Sie folgende Messparameter und Grenzwerte ein:

- Erdungswiderstandsobergrenze
- **Schritt 3** Befolgen Sie zur Durchführung der Erdungsmessung den Anschlussplan in Abb. 5.52. Benutzen Sie bei Bedarf die **Hilfe**-Funktion.

Abb. 5.11: Messung mit dem Erdungswiderstandmessung Set – 20 m
 Schritt 4 Kontrollieren Sie vor Beginn der Messung die angezeigten Warnhinweise und den Online-Spannungs-/Klemmenwächter. Wenn alles in Ordnung ist, drücken Sie die TEST-Taste. Nach der Durchführung der Messung erscheinen Ergebnisse zusammen mit dem Symbol BESTANDEN/NICHT BESTANDEN (sofern zutreffend) auf dem Display.

Abb. 5.52: Beispiel eines Ergebnisses der Erdungswiderstandmessung

Angezeigte Ergebnisse: **R**.....Erdungswiderstand **R**_c Hilfserderwiderstand **R**_P...... Sondenwiderstand.

Das angezeigte Messergebnis, falls gewünscht, speichern. Siehe Kapitel 6.1 für weitere Informationen über Einstellfunktionen und speichern von Messergebnissen.

Hinweis:

- Wenn der Wert f
 ür die Hilfserder oder Sondenwiderst
 ände zu hoch ist (100*RE oder > 50kO), wird das entsprechende Warnzeichen im Meldungsfeld angezeigt. Die Messergebnisse k
 önnen beeinflusst werden !
- Wenn eine anwesende Störspannung zwischen den Prüfklemmen H und E oder S anliegt (höher als 5 V), wird ein entsprechendes Warnzeichen im Meldungsfeld erscheinen. Die Messergebnisse können beeinflusst werden !

5.11 TRMS Strom (nur MI 3102)

Diese Gerätefunktion ermöglicht die Messung von AC Strömen in einem breiten Messbereich von 0.5 mA bis 20 A (mit der METREL Stromzange A 1018). Damit können Leck und Laströme schnell und zuverlässig gemessen werden. Die TRMS Funktion garantiert ein richtiges Prüfergebnis auch im Falle von nichtsinusförmigen Signalen.

Weitere Informationen über die Strommessung finden Sie im Metrel-Handbuch "Measurements on electric installations in theory and practice" (Messungen an elektrischen Anlagen in Theorie und Praxis).

So führen Sie die TRMS Strommessung durch:

Schritt 1 Wählen Sie mit dem Funktionswahlschalter die Funktion **STROM**. Folgendes Menü wird eingeblendet:

Abb. 5.12: Menü zur TRMS Strommessung Schließen Sie die Stromzange an das Eurotest-Gerät an.

Schritt 2 Stellen Sie den folgenden Grenzwert ein:

- Obere Grenze des Stroms
- **Schritt 3** Befolgen Sie zur Durchführung der TRMS Strommessung den Anschlussplan in Abb. 5.54. Benutzen Sie bei Bedarf die **Hilfe**-Funktion.

Abb. 5.13: Anschluss der Stromzange (A1018)

Schritt 4 Kontrollieren Sie vor Beginn der Messung die angezeigten Warnhinweise und den Online-Spannungs-/Klemmenwächter. Wenn alles in Ordnung ist, drücken Sie die TEST-Taste, um die Messung zu starten. Das tatsächliche Messergebnis mit der Anzeige BESTANDEN/NICHT BESTANDEN (sofern zutreffend) wird während der Messung auf dem Display eingeblendet. Um die Messung jederzeit anzuhalten, drücken Sie die TEST-Taste erneut. Das letzte Messergebnis wird zusammen mit der Anzeige BESTANDEN/NICHT BESTANDEN (sofern zutreffend) angezeigt:

Abb. 5.55: Beispiel eines Ergebnisses der TRMS Strommessung

Angezeigte Ergebnisse:

I.....TRMS Strom

Das angezeigte Messergebnis, falls gewünscht, speichern. Siehe Kapitel 6.1 für weitere Informationen über Einstellfunktionen und speichern von Messergebnissen.

Hinweis:

- Es sollen Stromzangen mit einem Übersetzungsverhältnis von 1000:1 angeschlossen werden. Wir empfehlen die METREL Stromzange A1018, die auch für Messungen in Bereich mA bestens geeignet ist.
- Ein zusätzlicher Fehler der angeschlossenen Stromzange ist beim Messfehler zu berücksichtigen!

Achtung!

 Keine Spannung an diesen Anschluss stecken. Der maximal zulässige dauerliche Strom an dem Anschluss beträgt 30 mA!

5.12 Beleuchtung (nur MI 3102)

Die Beleuchtungsmessung kann mit einer der entsprechenden Beleuchtungssonden (Type B , Type C) durchgeführt werden. Der Anschluss der Sonde erfolgt über die RS232 Schnittstelle.

So führen Sie die Messung der Beleuchtung durch:

Schritt 1 Wählen Sie mit dem Funktionswahlschalter die Funktion SENSOR, das folgende Menü wird eingeblendet:

Abb. 5.14: Menü zur Beleuchtungsmessung Schließen Sie die Beleuchtungssonde (A 1102 oder A 1119) an das Messgerät.

Schritt 2 Stellen Sie den folgenden Grenzwert ein:

- Untere Beleuchtungsgrenze
- **Schritt 3** .Schalten sie die Beleuchtungssonde ein (Ein/AusTaste, die grüne LED leuchtet). Stellen Sie die Beleuchtungssonde so auf, dass das gemessene Licht parallel auf den Lichtsensor fällt. Befolgen Sie zur Durchführung der Beleuchtungsmessung den Anschlussplan in Abb. 5.57. Benutzen Sie bei Bedarf die **Hilfe**-Funktion.

Abb. 5.15: Richtige Lage der Beleuchtungssonde

 Schritt 4 Kontrollieren Sie vor dem Beginn der Messung die angezeigten Warnhinweise. Wenn alles in Ordnung ist, drücken Sie die TEST-Taste, um die Messung zu starten. Das tatsächliche Messergebnis mit der Anzeige BESTANDEN/NICHT BESTANDEN (sofern zutreffend) wird während der Messung auf dem Display eingeblendet. Um die Messung jederzeit anzuhalten, drücken Sie die TEST-Taste erneut. Das letzte Messergebnis wird zusammen mit der Anzeige BESTANDEN/NICHT BESTANDEN (sofern zutreffend) angezeigt:

Abb. 5.16: Beispiel eines Ergebnisses der Beleuchtungsmessung Angezeigte Ergebnisse:

E.....Beleuchtung

Das angezeigte Messergebnis, falls gewünscht, speichern. Siehe Kapitel 6.1 für weitere Informationen über Einstellfunktionen und speichern von Messergebnissen. (nur MI3102).

Hinweis:

• Schatten und ungleichmässiger Lichtauffall beeinflussen das Messergebnis !

6 Handlung mit Messergebnissen (MI 3102)

Nach einer durchgeführten Messung können alle angezeigte Messergebnisse und Messparameter gespeichert werden. So können die Messwerte direkt am Messort klassifiziert, abgespeichert und wieder abgerufen werden, sowie auch zur Weiterverarbeitung und Protokollierung an den PC übertragen werden.

Die Messergebnisse werden auf Speicherplätzen mit einer Struktur auf drei Speicherebenen (wie in einem Verzeichnisbaum) abgespeichert:

- Discrete Objekt die erste (höchste) Speicherebene,
- Verteiler die zweite Speicherebene,
- □ Sicherung die dritte (niedrigste) Speicherebene.

Die Speicherstruktur ist bereits in dem Instrument vorprogrammiert (siehe Abb.6.1).

OBJEKT 001	≻ VERTEIL	ER 001 > SICHERUNG 001 > SICHERUNG 002
		≻ SICHERUNG 999
	> VERTEIL	ER 002 > SICHERUNG 001 > SICHERUNG 002
		≻ SICHERUNG 999
	≻ VERTEIL	ER 999 > SICHERUNG 001 > SICHERUNG 002
OBJEKT 002 OBJEKT 999		> SICHERUNG 999

Abb. 6.1: Die in dem Instrument vorprogrammierte Speicherstruktur

6.1 Speichern von Messergebnissen

So speichern Sie ein Messergebnis:

Schritt 1 Führen Sie die gewünschte Messung wie unter dem jeweiligen Abschnitt beschrieben durch. Drücken Sie die Taste SPEICHERN, es wird das folgende Menü eingeblendet:

Werte ab:	sPeichern
> OBJEKT	001
SICHE	ILER 001 ERUNG 001
Speicher	leer91.1%

Abb. 6.2: Menü "Messwerte speichern"

Schritt 2 Mit den A/∀ Tasten den Cursor auf die Strukturebene OBJEKT setzen. Mit den </≻ Tasten das gewünschte Strukturelement OBJEKT xxx eingeben.

Mit den A/∀ Tasten den Cursor auf die Strukturebene VERTEILER setzen. Mit den </≻ Tasten das gewünschte Strukturelement VERTEILER xxx eingeben.

In der "*No.* " Zeile ist die Zahl der gespeicherten Ergebnisse in dem ausgewählten Strukturelement angezeigt.

Schritt 3 Drücken Sie die SPEICHERN-Taste, um die Messergebnisse zu speichern. Bevor das Messgerät in das Messmenü zurückkehrt, wird die Meldung "Ergebnisse gespeichert" kurz eingeblendet.

Hinweis:

- □ Jedes Messergebnis kann nur einmal gespeichert werden.
- Es können beliebig viele Messergebnisse in einen Strukturelement SICHERUNG gespeichert werden.

6.2 Abrufen von Messergebnissen

Im Speicher – Menü können gespeicherte Ergebnissen abgerufen oder gelöscht werden.

Drücken Sie die Taste SPEICHERN um in das Speicher - Menü zu gelangen:

> Spei	cher abr	ufen
Spei	ch.lösch	en
Spei	ch.lösch	en
SPeich	er leer9	1.1%

Abb. 6.3: "Speicher" Menü

So rufen Sie ein Messergebnis ab:

Schritt 1 Mit den A/✓ Tasten den Cursor auf ERGEBNISSE ABRUFEN setzen. Drücken Sie die Taste TEST, es wird das folgende Menü eingeblendet:

S	°eich	er abrufen
>	OBJE	KT 001
	VER	TEILER 001 CHERUNG 001
-	klue .	2
5	Nr	4

Abb. 6.4: Menu "Ergebnisse abrufen""Schritt 2Mit den ▲/❤Tasten den Cursor auf die Strukturebene OBJEKT setzen.

Mit den *◄*/≻ Tasten das gewünschte Strukturelement OBJEKT xxx eingeben.

In der "*No.* " Zeile wird die Zahl der gespeicherten Ergebnissen in dem ausgewählten Strukturelement angezeigt.

Schritt 3 Mit den A/Y Tasten den Cursor auf die "No. " Zeile setzen.

Sř	Peicher abrufen	1
3	OBJEKT 001	
	VERTEILER 001 SICHERUNG 001	
>	Nr.: 1/2	j.
1	RKLEIN	

Abb. 6.5: Menü zur Auswahl der gespeicherten Messergebnisse Mit den ∢/≻ Tasten das gewünschte gespeicherte Messergebnis auswählen. Nach der Bestätigung mit der TEST Taste wird das ausgewählte Messergebnis eingeblendet.

Abb. 6.6: Beispiel eines abgerufenen Ergebnisses

Andere Messergebnisse im ausgewählten Speicherelement können mit den ∢/≻ Tasten abgerufen werden. Mit den ▲/Ƴ Tasten zurück ins Menü ERGEBNISSE ABRUFEN kehren.

6.3 Löschen von Messergebnissen

Es gibt drei Möglichkeiten, die abgespeicherten Messergebnisse zu löschen.

- Einzelne Messergebnisse werden gelöscht
- o Alle Messergebnisse in einem Strukturelement werden gelöscht
- o Der gesamte Messwertspeicher wird gelöscht

So wird ein Messergebnis gelöscht:

Schritt 1 Drücken Sie die Taste SPEICHERN um in das Speicher -Menü zu gelangen:

Mit den ▲/▼ Tasten den Cursor auf ERGEBNISSE LÖSCHEN setzen. Drücken Sie die Taste TEST, folgendes Menü wird eingeblendet:

Abb. 6.7: Menü "Ergebnisse löschen""

Schritt 2 Mit den A/Y Tasten den Cursor auf die Strukturebene OBJEKT setzen. Mit den </>> Tasten das gewünschte Strukturelement OBJEKT xxx eingeben.

In der "*No.* " Zeile ist die Zahl der gespeicherten Ergebnissen in dem ausgewählten Strukturelement angezeigt.

Schritt 3 Mit den A/Y Tasten den Cursor auf die "No. " Zeile setzen.

SP	eich.löschen
3	DBJEKT 001
	SICHERUNG 001
>	$N_{1} = 1/2$

Abb. 6.8: Menü zum Löschen der gespeicherten Messergebnisse

Mit den ∢/≻ Tasten das entsprechende Messergebnis auswählen. Nach der Bestätigung mit der TEST Taste wird das ausgewählte Messergebnis

eingeblendet, und nach erneutem drücken der TEST Taste gelöscht. Die Löschprozedur kann mit einer der Tasten </≻/▲/∀/SPEICHERN verlassen werden, ohne die Messwerte zu löschen.

So werden alle Messergebnisse in einem Strukturelement gelöscht:

Schritt 1 Drücken Sie die Taste MEM um in das Speicher - Menü zu gelangen: Mit den ▲/☞ Tasten den Cursor auf ERGEBNISSE LÖSCHEN setzen. Drücken Sie die Taste TEST, es wird das folgende Menü eingeblendet:

Abb. 6.9: Menü "Ergebnisse löschen""

Schritt 2

Löschen von allen Messergebissen in einem Strukturelement der 3. Ebene (SICHERUNG)

In der "*No.* " Zeile ist die Zahl der gespeicherten Ergebnisse in dem ausgewählten Speicherplatz angezeigt.

Abb. 6.10: Menu zur Löschen von Ergebnissen in der 3. Ebene Setzen Sie mit Schritt 3 fort.

Löschen von allen Messergebissen in einem Strukturelement der 2. Ebene (VERTEILER)

Mit den A/∀ Tasten den Cursor auf die Strukturebene VERTEILER setzen. Mit den </≻ Tasten das gewünschte Strukturelement VERTEILER xxx eingeben

In der "*No.* " Zeile ist die Zahl der gespeicherten Ergebnisse in der ausgewählten 2. Strukturebene angezeigt.

Speich.löschen	
OBJEKT 001 > VERTEILER 003 SICHERUNG 002	
Nr.: 2	

Abb. 6.11: Menü zur Löschen von Ergebnissen in der 2. Ebene Setzen Sie mit Schritt 3 fort.

Löschen von allen Messergebnissen in einem Strukturelement der 1. Ebene (OBJECT)

Mit den \wedge/\forall Tasten den Cursor auf die Strukturebene OBJECT setzen. Mit den \langle/\rangle Tasten das gewünschte Strukturelement OBJECT xxx eingeben

In der "*No.* " Zeile ist die Zahl der gespeicherten Ergebnisse in der ausgewählten 1. Strukturebene angezeigt.

Abb. 6.12: Menu zur Löschen von Ergebnissen in der 1. Ebene

Step 3 Drücken Sie die TEST Taste. Durch erneutes Drücken der TEST Taste werden die Ergebnissen gelöscht. Die Löschprozedur kann mit einer der Tasten ≪/≻/∧/∀/SPEICHERN verlassen werden, ohne die Messwerte zu löschen.

So wird der gesamte Messwertspeicher gelöscht

Schritt 1 Drücken Sie die Taste SPEICHERN um in das Speicher - Menü zu gelangen:

Mit den A/Y Tasten den Cursor auf GESAMTEN SPEICHER LÖSCHEN setzen.

Drücken Sie die Taste TEST, es wird das folgende Menü eingeblendet:

Speich.löschen		
Bestätigung mit	TEST	

Abb. 6.13: Menü zur Löschen des gesamten MesswertspeichersSchritt 2Durch erneutes Drücken der TEST Taste werden die Ergebnissen
gelöscht. Die Löschprozedur kann mit einer der Tasten
</r></r></r></r></r>

7 Datenübertragung in den PC (nur MI 3102)

Beide Schnittstellen (RS232 und USB) sind für die Übertragung von gespeicherten Daten in den PC geeignet.

7.1 Die EuroLinkXE PC Software

Die EuroLinkXE Software ermöglicht:

- Dokumentierung von Messergebnissen.
- Herstellung von einfachen Messprotokollen
- Exportierung von Messergebnissen in sogenannten "Spreadsheet" Programmen.

Wie wird die Datenübertragung durchgeführt

- **Schritt 1** Verbinden Sie das Eurotest-Gerät und den PC mit dem USB oder RS232 Kabel. Achten Sie darauf, das die richtige Schnittstelle ausgewählt ist (siehe Kapitel 4.5.3).
- Step 2 Starten Sie die EuroLinkXE PC Software.

Abb. 7.1: EuroLinkXE PC Software

Schritt3 Wählen Sie die Receive results Ikone oder die Option Receive results im Instrument Menü um die gespeicherten Daten zu übertragen. Nachdem die Übertragung beendet ist, wird die tatsächliche Speicherstruktur am PC eingeblendet.

_	_					
	Loux	vier Function	Пенцію	Pasaruelees	Links	Date
16	001 001 002	RCD I	ld = 21.0 mA Uci = 27.6 V I = 10 ms	SVS TRUT T Idn = 30 mA phase 0° Ince : General &C	UEK SOV	
17	001 001 002	RCD (id = 21.0 mA Uci = 27.6 V t = 10 mi	SVS TRUTT Idn = 30 mA phase 0° tope: General AD	Uc < 50 V	
18	001 001 002	RCD I	ld = 21.0 mA Uci = 27.6 ∀ t = 18 mc	SVS TN/TT ldb = 30 rsA phase 0" type: General AC	Ue< 50 V	
19	001 001 002	PCD 1	id = 21.0 mik Uci = 27.6 V I = 18 mic	SVS TN/T1 ldn = 30 mA phase 0° type : Ceneral AC	Ue< 50 V	
-20	001	2 RCD I	M = 21.0 mA Uci = 27.6 V t = 18 m	SYS TN/F1 ldn = 30 rsA phase 0° type : Ceneral_AE	Uc+60V	
33	001	PCD I	ld = 21.0 mA Uci = 27.6 V t = 18 mc	SYS TN/F1 Idn = 30 mA phase 0° type: General AD	Uc< 50 V	
72	2 001 001 082	PCD I	ld = 21.0 mA U ei = 27.6 V t = 18 m	FYS TN/T1 Idn = 30 m/ shape: 0" Igse: General AC	Uc<50√	
23	8 001 001 082	RCD I	id = 21.0 mA Uci = 27.6 V I = 18 ms	5YS TN/T1 Idn = 30 re4 shape 0° teps : General AC	0o< 50 V	
24	001	PCD I	ld = 21.0 mÅ Uci = 27.6 V t = 18 mi	5YS TN/T1 Idn = 30 mA share: 0° tese: General AC	Uc< 50 V	
3	5 001 001 082	PCD I	ld = 21.0 mé Uci = 27.6 V X = 18 m	5YS TN/T1 idn = 30 mÅ share, 0° texe : General AC	Uo<50V	
-75	5 007 001 012	RCD I	M = 21.0 mA Uci = 27.6 Y (= 18 ms	5YS TN/T1 ldn = 30 mÅ phave. 0* tepe : General AC	0c<50V	
27	007 012	RCD I	id = 21.0 mb Uci = 27.6 V t = 18 ms	sivis triumt t Idn = 30 må phave. 01 type : General, AC	0 o < 50 V	
28	007 007 082	PCD I	ld - 21.0 mA Uci = 27.6 Y I = 18 ms	SYS TRUTT Idn = 30 mÅ phare 0° ppc: General AC	Ua< 50 V	
2	001	2 NCD 1	id = 21.0 mA Uci = 27.6 Y t = 18 mi	SYS TRATT Idn = 30 må phate: 0° spel: General AD	Uc<50V	
30	000	NCD 1	Id = 21.0 mA Id = 37.6 V I = 18 ms	SYS TRUT 1 Idn = 30 mb share, 0° type: General AD	Uc < 90 V	
31	001 001 002	RCD I	ld = 21.0 mA Upi = 27.6 V t = 18 ms	SVS TN/T1 Ido + 30 m/ phase 0° trop: General AC	Uc < 50 V	
0 10	C Inne	5-54 A	II NEW I	ELAS TALKET	14	

Abb. 7.2: Beispiel einer Darstellung von Messergebnissen am PC

Schritt 4 Die angezeigten Daten können vor der Dokumentierung verarbeitet bzw. angepasst werden.

8 Wartung

8.1 Austausch von Sicherungen

Unter der rückseitigen Abdeckung des Eurotest-Instruments gibt es drei Sicherungen.

□ F1

M 0,315 A / 250 V, 20×5 mm Diese Sicherung schützt die interne Schaltung der Niederohmfunktion, wenn Prüfsonden irrtümlich an die Netzspannung angeschlossen werden.

□ F2, F3

M 4 A / 500 V, 32×6,3 mm Das sind allgemeine Eingangsschutz-Sicherungen der Prüfklemmen L/L1 und N/L2.

Achtung:

- Vor Öffnen der Abdeckung des Batterie-/Sicherungsfachs das gesamte Messzubehör abklemmen und das Instrument ausschalten, da sonst im Inneren gefährliche Spannung anliegt.
- Durchgebrannte Sicherungen nur durch Originalsicherungen ersetzen, da das Instrument sonst beschädigt wird und/oder die Sicherheit des Bedieners beeinträchtigt werden kann.

Die Position der Sicherungen ist aus Abbildung 3.4 "Rückwand" im Abschnitt 3.3 ersichtlich.

8.2 Reinigung

Für das Gehäuse ist keine spezielle Wartung erforderlich. Benutzen Sie zur Reinigung der Instrumentenoberfläche ein weiches Tuch, das leicht mit Seifenwasser oder Alkohol angefeuchtet ist. Danach das Instrument vor weiterer Benutzung vollständig trocknen lassen.

Achtung:

- Verwenden Sie keine Flüssigkeiten auf der Basis von Benzin oder Kohlenwasserstoffen.
- Verschütten Sie keine Reinigungsflüssigkeit über das Instrument.

8.3 Periodische Kalibrierung

Es ist wichtig, das Instrument regelmäßig zu kalibrieren, damit die in diesem Handbuch angegebenen technischen Daten garantiert werden. Wir empfehlen eine jährliche Kalibrierung. Die Kalibrierung darf nur durch einen autorisierten Techniker durchgeführt werden. Bitte wenden Sie sich für weitere Informationen an Ihren Händler.
8.4 Service

Wenden Sie sich für Garantiereparaturen oder bei anderen Fragen jederzeit an Ihren Händler.

Herstelleradresse:

METREL D.D. Ljubljanska cesta 77 SI – 1354 Horjul Slowenien

Unbefugten Personen ist es nicht gestattet, das Eurotest-Instrument zu öffnen. Im Inneren des Instruments gibt es keine Komponenten, die vom Benutzer auszutauschen wären, außer drei Sicherungen, siehe Abschnitt 6.1 "Austausch von Sicherungen".

9 Technische Daten

9.1 Isolationswiderstand

Isolationswiderstand (Nennspannungen 100 V_{DC} und 250 V_{DC}) Messbereich nach EN61557-2: 0,017 M Ω bis 199,9 M Ω

Messbereich (MW)	Auflösung (MW)	Genauigkeit
0,000 - 1,999	0,001	1/50/ dec Ablecowerte
2,00 - 99,99	0,01	\pm (5% des Ablesewerts
100,0 - 199,9	0,1	+ 3 Digits)

Isolationswiderstand (Nennspannungen 500 V_{DC} und 1000 V_{DC}) Messbereich nach EN61557-2: 0,011 M Ω bis 999 M Ω

Messbereich (M W)	Auflösung (MW)	Genauigkeit
0,000 - 1,999	0,001	1/29/ dec Ablecowerte
2,00 - 99,99	0,01	$\pm (2\% \text{ des Ablesewents})$
100,0 - 199,9	0,1	+ 3 Digits)
200,0 - 999,9	1	±(10% des Ablesewerts)

Die angegebene Genauigkeit gilt bei Einsatz des Universalprüfkabels. Bei Einsatz der Taster-Prüfspitze gilt sie bis 200 M Ω .

Spannung

Messbereich (V)	Auflösung (V)	Genauigkeit
0 ÷ 1200	1	±(3% des Ablesewerts
		+ 3 Digits)

Wenn das Instrument feucht wird, könnten die Ergebnisse beeinträchtigt werden. In einem solchen Fall ist es ratsam, das Instrument und das Zubehör mindestens 24 Stunden trocknen zu lassen.

9.2 Isolationsüberwachung in IT Systemen

Fehlerstrom im Falle des ersten Fehlers

Fehlerstrom (Simulierter Widerstand 390 Ω (±1 %))

Messbereich (mA)	Auflösung (mA)	Genauigkeit
0.0 ÷ 9.9	0,01	\pm (5 % des Ablesewerts + 2
		Digits)
10 ÷ 20	1	\pm (5 % des Ablesewerts)
20 ÷ 99	1	Indicative

Prüfung der Alarmauslösegrenze

Der Fehlerstrom im Falle des ersten Fehlers (beim Grenzwert des Isolationswiderstandes)

Messbereich (mA)	Auflösung (mA)	Genauigkeit
0.0 ÷ 9.9	0,01	\pm (5 % des Ablesewerts + 2
		Digits)
10 ÷ 20	1	\pm (5 % des Ablesewerts)
10 ÷ 99	1	Indikative

Einstellbare Grenzwert des Isolationswiderstandes 19.0 k Ω (±6 %) ÷ 650 k Ω (±15 %)

9.3 Durchgangswiderstand

9.3.1 Niederohmmessung

Messbereich nach EN61557-4: 0,16 Ω bis 1999 Ω

Messbereich (W)	Auflösung (W)	Genauigkeit
0,00 - 19,99	0,01	±(3% des Ablesewerts + 3 Digits)
20,0 - 99,9	0,1	+(E)(dec Ablecowerte)
100 - 1999	1	$\pm (5\%$ des Ableseweits)

9.3.2 Durchgangsprüfung

Messbereich (W)	Auflösung (W)	Genauigkeit
0,0 - 99,9	0,1	\pm (5% des Ablesewerts
100 - 1999	1	+ 3 Digits)

9.4 Fehlerstromschutzprüfung

9.4.1 Allgemeine Angaben

Nennfehlerstrom	10 mA, 30 mA, 100 mA, 300 mA, 500 mA,
	1000 mA
Genauigkeit der Nennfehlerstrommes	ssung0 / +0,1· I_{Δ} ; $I_{\Delta} = I_{\Delta N}$, 2× $I_{\Delta N}$, 5× $I_{\Delta N}$
	-0,1· I_{Δ} / +0; $I_{\Delta} = \frac{1}{2} \times I_{\Delta N}$
Prüfstromform	sinusförmig, gepulst
	Fehlerstrom-Schutzgerätetyp: allgemein
	(unverzögert), selektiv (verzögert)
Anfangspolarität des Prüfstroms	0° oder 180°
Spannungsbereich	100 V - 264 V (45 Hz - 65 Hz)

Stromauswahl für Prüfung der Fehlerstrom-Schutzeinrichtung (Effektivwert berechnet zu 20 ms) nach IEC 61009:

	1/2>	$\langle I_{\Delta N}$	1×	$I_{\Delta N}$	2×	$I_{\Delta N}$	5×	$I_{\Delta N}$	RCD	DΔ
I _{∆N} (mA)	AC	А	AC	Α	AC	Α	AC	A	AC	А
10	5	3,5	10	20	20	40	50	100	~	\checkmark
30	15	10,5	30	42	60	84	150	212	~	\checkmark
100	50	35	100	141	200	282	500	707	✓	✓
300	150	105	300	424	600	848	1500	2120	>	\checkmark
500	250	175	500	707	1000	1410	2500	3500	>	\checkmark
1000	500	350	1000	1410	2000	*)	*)	*)	\checkmark	\checkmark

^{*)}nicht zutreffend

9.4.2 Berührungsspannung

Messbereich nach EN61557-6: 3.1 bis 99,9 V

Messbereich (V)	Auflösung (V)	Genauigkeit
0,0 - 9,9		(-0 % / +10 %) des
	0,1	Ablesewerts
		+2 Digits
10,0 - 99,9	0,1	(-0 % / +10 %) des
		Ablesewerts

Prüfstrom max. $0.5 \times I_{\Delta N}$ Berührungsspannungsgrenzwert 25 V, 50 V

Der Fehlerschleifenwiderstand bei Berührungsspannung wird berechnet mit $_ = \frac{1}{-\frac{1}{2}}$.

9.4.3 Auslösezeit

Messbereiche nach EN61557

Allgemeine (unverzögerte) Fehlerstrom-Schutzeinrichtungen

Messbereich (ms)	Auflösung (ms)	Genauigkeit
0 - 300 (½×Ι _{ΔΝ} , Ι _{ΔΝ})	1	
0 - 150 (2×I _{∆N})	1	±3 ms
0 - 40 (5×I _{ΔN})	1	

Selektive (verzögerte) Fehlerstrom-Schutzeinrichtungen

Messbereich (ms)	Auflösung (ms)	Genauigkeit
0 - 500 (½×I _{∆N} , I _{∆N})	1	
0 - 200 (2×I _{∆N})	1	±3 ms
0 - 150 (5×I∆N)	1	

Prüfstrom $\frac{1}{2} \times I_{\Delta N}$, $I_{\Delta N}$, $2 \times I_{\Delta N}$, $5 \times I_{\Delta N}$

Der Multiplikator 5 ist nicht verfügbar bei $I_{\Delta N}$ =1000 mA (allgemeiner Fehlerstrom-Schutz) bzw. $I_{\Delta N} \ge 500$ mA (selektiver Fehlerstrom-Schutz).

Der Multiplikator 2 ist nicht verfügbar bei $I_{\Delta N}$ =1000 mA (selektiver Fehlerstrom-Schutz).

9.4.4 Auslösestrom

Messbereiche nach EN61557

Auslösestrom ($I_{\Delta N}$ =10 mA)

Messbereich I _D	Auflösung I _D	Genauigkeit
$0,2 \times I_{\Delta N}$ - $1,1 \times I_{\Delta N}$ (AC-Typ)	0,05×I _{∆N}	$\pm 0,1 \times I_{\Delta N}$
0,2×I _{∆N} - 2,2×I _{∆N} (A-Typ)	0,05×I _{∆N}	$\pm 0,1 \times I_{\Delta N}$

Auslösestrom (I_{∆N}≥30 mA)

Messbereich I _D	Auflösung I _D	Genauigkeit
0,2×I _{∆N} - 1,1×I _{∆N} (AC-Typ)	0,05×I _{∆N}	$\pm 0,1 \times I_{\Delta N}$
0,2×I _{∆N} - 1,5×I _{∆N} (A-Typ)	0,05×I _{∆N}	$\pm 0,1 \times I_{\Delta N}$

Auslösezeit

Messbereich (ms)	Auflösung (ms)	Genauigkeit
0 - 300	1	±3 ms

Berührungsspannung

Messbereich nach EN61557: 1,0 bis 99,9 V

Messbereich (V)	Auflösung (V)	Genauigkeit
		(-0% / +10 %) des
0,0 - 9,9	0,1	Ablesewerts
		+2 Digits
10,0 - 99,9	0,1	(-0% / +10 %) des
		Ablesewerts

9.5 Fehlerschleifenwiderstand und unbeeinflusster Fehlerstrom

Funktion Fehlerschleifenwiderstand

Messbereich nach EN61557-3: 0,26 Ω bis 1999 Ω

Messbereich (W)	Auflösung (W)	Genauigkeit
0,00 - 19,99	0,01	L(E)/ dec Ablacowarta
20,0 - 99,9	0,1	$\pm (5\% \text{ des Ablesewents})$
100 - 1999	1	+5 Digits)

Unbeeinflusster Fehlerstrom

Messbereich (A)	Auflösung (A)	Genauigkeit
0,00 - 19,99	0,01	Reachtan Sia dia
20,0 - 99,9	0,1	Conquigkoit der Mosquag
100 - 999	1	des Echlerschleifen
1,00 kA - 9,99 kA	10	widerstands
10,0 - 24,4 kA	100	widerstatius

Prüfstrom (bei 230 V)..... 2,5 A (10 ms) Nennspannungsbereich..... 100 V - 264 V (45 Hz - 65 Hz)

Funktion Rs (rcd30mA)

Messbereich nach EN61557: 0,67 Ω bis 1999 Ω

Messbereich (W)	Auflösung (W)	Genauigkeit
0,00 - 19,99	0,01	±(5% des Ablesewerts +15 Digits)
20,0 - 99,9	0,1	±5 % des Ablesewerts
100 - 1999	1	±5 % des Ablesewerts

Keine Auslösung der Fehlerstrom-Schutzeinrichtung bei $I_{\Delta N} \ge 30$ mA

Prüfstrom (bei 230 V)..... max. 0,85 A (max. Dauer 150 µs)

Funktion Rs (rcd10mA)

Messbereich nach EN61557: 1,37 Ω bis 1999 Ω

Messbereich (W)	Auflösung (W)	Genauigkeit ^{*)}
0,00 - 19,99	0,01	±(10 % des Ablesewerts +25 Digits)
20,0 - 99,9	0,1	±10 % des Ablesewerts
100 - 1999	1	±10 % des Ablesewerts

*) Die Genauigkeit kann bei starkem Rauschen der Netzspannung beeinträchtigt werden.

Keine Auslösung der Fehlerstrom-Schutzeinrichtung bei $I_{\Delta N} \ge 10 \text{ mA}$

Prüfstrom (bei 230 V)..... max. 0,24 A (max. Dauer 150 µs)

9.6 Leitungswiderstand und unbeeinflusster Kurzschlussstrom

Messbereich Hach Eine 1307-5. 0,20 32 bis 1535 32		
Messbereich (W)	Auflösung (W)	Genauigkeit
0,00 - 19,99	0,01	L(E)/ dec Ablecowerte
20,0 - 99,9	0,1	$\pm (5\% \text{ des Ablesewerts})$
100 - 1999	1	+5 Digits)

Messbereich nach EN61557-3: 0,26 Ω bis 1999 Ω

Unbeeinflusster Kurzschlussstrom

Messbereich (A)	Auflösung (A)	Genauigkeit
0,00 ÷ 19,99	0,01	
20,0 ÷ 99,9	0,1	Beachten Sie die
100 ÷ 999	1	Genauigkeit der Messung
1,00 kA ÷ 9,99 kA	10	des Leitungswiderstands
10,0 ÷ 24,4 kA	100	

Prüfstrom (bei 230 V)..... 2,5 A (10 ms) Nennspannungsbereich..... 100 V - 440 V (45 Hz - 65 Hz)

9.7 Phasendrehung

Nennnetzspannungsbereich 100 V_{AC} - 440 V_{AC} Angezeigtes Ergebnis 1.2.3 oder 2.1.3

9.8 Spannung und Frequenz

Messbereich (V)	Auflösung (V)	Genauigkeit
0 - 500	1	±(2% des Ablesewerts
		+2 Digits)

Nennfrequenzbereich...... 45 Hz - 65 Hz

Messbereich (Hz)	Auflösung (Hz)	Genauigkeit
45.0 ÷ 65.0	0,1	± 2Digits

Nennspannungsbereich 10 V - 500 V

9.9 Online-Spannungswächter

Messbereich (V)	Auflösung (V)	Genauigkeit
10 - 500	1	±(2% des Ablesewerts
		+2 Digits)

Wenn eine Spannung über 500 V an den Prüfklemmen anliegt, wird der Online-Spannungswächter nur als Spannungsanzeige verwendet.

9.10 Erdungswiderstand

Messbereich (W)	Auflösung (W)	Genauigkeit	
0.00 ÷ 19.99	0.01	±(2% des Ablesewerts +3 Digits)	
20.0 ÷ 99.9	0.1		
100 ÷ 1999	1		

Hilfserderwiderstand R_{Cmax} $100 \times R_E$ or 50 kΩ (niedrigerer Wert)Messsondewiderstand R_{Pmax} $100 \times R_E$ or 50 kΩ (niedrigerer Wert)Zusätzliche Fehler bei R_{Cmax} oder R_{Pmax} $100 \times R_E$ or 50 kΩ (niedrigerer Wert)Zusätzliche Fehler bei 3 V Störspannung (50 Hz) $\pm (5 \% des Ablesewerts + 10 digits)$ Leerlaufspannung $< 45 V_{AC}$ Kurzschlussstrom< 20 mAFrequenz125 HzAutomatische Überwachung und Anzeige der Hilfserder- und SondenwiderständeAutomatische Überwachung der Störspannung

9.11 TRMS Strom

Messbereich (A)	Auflösung (A)	Genauigkeit	
0.0 ÷ 99.9 mA	0.1 mA	±(5% des Ablesewerts +3 Digits))	
100 ÷ 999 mA	1 mA	$+(E_{0})(dec_{0})$	
1.00 ÷ 19.99 A	0.01 A	\pm (5 % des Ableseweits)	

9.12 Beleuchtung

9.12.1 Beleuchtung (Beleuchtungssonde, Typ B)

Messbereich (lux)	Auflösung (lux)	Genauigkeit
0.01 ÷ 19.99	0.01	
20.0 ÷ 199.9	0.1	±(5% des Ablesewerts
200 ÷ 1999	1	+2 Digits))
2.00 ÷ 19.99 k	10	

Messmethode	.Si Photodiode mit V(λ) Filter
Sondensensorkarakteristik	< 3.8 % nach CIE Kurve
Kosinus Fehler	< 2.5 % im Bereich +/- 85 Grad
Allgemeine Genauigkeit nach dem Dll	V 5032 Class B Standard

9.12.2 Beleuchtu	ng (Beleuchtungssonde,	Typ C)
------------------	------------------------	--------

Messbereich (lux)	Auflösung (lux)	Genauigkeit
0.01 ÷ 19.99	0.01	
20.0 ÷ 199.9	0.1	±(10% des Ablesewerts
200 ÷ 1999	1	+3 Digits))
2.00 ÷ 19.99 k	10	

MessmethodeSi photodiode Kosinus Fehler.....< 2.5 % im Bereich +/- 85 Grad Allgemeine Genauigkeit nach dem DIN 5032 Class C Standard

9.13 Allgemeine Angaben

Versorgungsspannung	9 V _{DC} (6×1,5 V Batterie oder Akkumulator, Größe AA)
Ladegerät-Versorgungseinheit Betrieb	12 V - 15 V / 400mA 15 h normal
Taster-Stecker (optional) Überspannungskategorie	CAT III / 300 V
Überspannungskategorie Schutzklasse Verschmutzungsgrad Schutzart	CAT III / 600 V doppelte Isolierung 2 IP 42
Display	128×64-Punkt-Matrix-Display mit Hintergrundbeleuchtung
Speichergrösse Abmessungen ($B \times H \times T$) Gewicht (ohne Batterien)	1,17 kg
Referenzbedingungen Temperaturbereich Luftfeuchtebereich	10 °C - 30 °C 40% - 70 % rel. Luftfeuchte
Betriebsbedingungen Betriebstemperaturbereich Max. rel. Luftfeuchte	0 °C - 40 °C 95% (0 °C bis 40 °C(nicht kondensierend)
Lagerbedingungen Temperaturbereich Max. rel. Luftfeuchte	-10 °C bis +70 °C 90% (-10 °C bis + 40 °C) 80% (40 °C bis 60 °C)
Die Genauigkeitsangaben gelten für Temperaturkoeffizient außerhalb dies	1 Jahr unter Referenzbedingungen. Der ser Grenzwerte beträgt 0,2% des Messwerts pro

10 Anhang A

10.1 Sicherungstabelle

	Auslösezeit der	Strombemessung	Unbeeinflusster Kurzschlussstrom (A)
Sicherungstyp	Sicherung	der Sicherung	unterer Wert
NV	35 ms	2 A	32,5
NV	35 ms	4 A	65,6
NV	35 ms	6 A	102,8
NV	35 ms	10 A	165,8
NV	35 ms	16 A	206,9
NV	35 ms	20 A	276,8
NV	35 ms	25 A	361,3
NV	35 ms	35 A	618,1
NV	35 ms	50 A	919,2
NV	35 ms	63 A	1217,2
NV	35 ms	80 A	1567,2
NV	35 ms	100 A	2075,3
NV	35 ms	125 A	2826,3
NV	35 ms	160 A	3538,2
NV	35 ms	200 A	4555,5
NV	35 ms	250 A	6032,4
NV	35 ms	315 A	7766,8
NV	35 ms	400 A	10577,7
NV	35 ms	500 A	13619
NV	35 ms	630 A	19619,3
NV	35 ms	710 A	19712,3
NV	35 ms	800 A	25260,3
NV	35 ms	1000 A	34402,1
NV	35 ms	1250 A	45555,1
NV	0,1 s	2 A	22,3
NV	0,1 s	4 A	46,4
NV	0,1 s	6 A	70
NV	0,1 s	10 A	115,3
NV	0,1 s	16 A	150,8
NV	0,1 s	20 A	204,2
NV	0,1 s	25 A	257,5
NV	0,1 s	35 A	453,2
NV	0,1 s	50 A	640
NV	0,1 s	63 A	821,7
NV	0,1 s	80 A	1133,1
NV	0,1 s	100 A	1429
NV	0,1 s	125 A	2006
NV	0,1 s	160 A	2485,1
NV	0,1 s	200 A	3488,5
NV	0,1 s	250 A	4399,6
NV	0,1 s	315 A	6066,6
NV	0,1 s	400 A	7929,1

	Auslösezeit der	Strombemessung	Unbeeinflusster Kurzschlussstrom (A)
Sicherungstyp	Sicherung	der Sicherung	unterer Wert
NV	0,1 s	500 A	10933,5
NV	0,1 s	630 A	14037,4
NV	0,1 s	710 A	17766,9
NV	0,1 s	800 A	20059,8
NV	0,1 s	1000 A	23555,5
NV	0,1 s	1250 A	36152,6
NV	0,2 s	2 A	18,7
NV	0,2 s	4 A	38,8
NV	0,2 s	6 A	56,5
NV	0,2 s	10 A	96,5
NV	0,2 s	16 A	126,1
NV	0,2 s	20 A	170,8
NV	0,2 s	25 A	215,4
NV	0,2 s	35 A	374
NV	0,2 s	50 A	545
NV	0,2 s	63 A	663,3
NV	0,2 s	80 A	964,9
NV	0,2 s	100 A	1195,4
NV	0,2 s	125 A	1708,3
NV	0,2 s	160 A	2042,1
NV	0,2 s	200 A	2970,8
NV	0,2 s	250 A	3615,3
NV	0,2 s	315 A	4985,1
NV	0,2 s	400 A	6632,9
NV	0,2 s	500 A	8825,4
NV	0,2 s	630 A	11534,9
NV	0,2 s	710 A	14341,3
NV	0,2 s	800 A	16192,1
NV	0,2 s	1000 A	19356,3
NV	0,2 s	1250 A	29182,1
NV	0,4 s	2 A	15,9
NV	0,4 s	4 A	31,9
NV	0,4 s	6 A	46,4
NV	0,4 s	10 A	80,7
NV	0,4 s	16 A	107,4
NV	0,4 s	20 A	145,5
NV	0,4 s	25 A	180,2
NV	0,4 s	35 A	308,7
NV	0,4 s	50 A	464,2
NV	0,4 s	63 A	545
	0,4 s	80 A	836,5
	0,4 s	100 A	1018
	0,4 s	125 A	1454,8
	0,4 s	160 A	1678,1
INV	0,4 s	200 A	2529,9
NV	0,4 s	250 A	2918,2

	Auslösezeit der	Strombemessung	Unbeeinflusster Kurzschlussstrom (A)
Sicherungstyp	Sicherung	der Sicherung	unterer Wert
NV	0,4 s	315 A	4096,4
NV	0,4 s	400 A	5450,5
NV	0,4 s	500 A	7515,7
NV	0,4 s	630 A	9310,9
NV	0.4 s	710 A	11996.9
NV	0,4 s	800 A	13545,1
NV	0,4 s	1000 A	16192,1
NV	0,4 s	1250 A	24411,6
NV	5 s	2 A	9,1
NV	5 s	4 A	18,7
NV	5 s	6 A	26,7
NV	5 s	10 A	46,4
NV	5 s	16 A	66,3
NV	5 s	20 A	86,7
NV	5 s	25 A	109,3
NV	5 s	35 A	169,5
NV	5 s	50 A	266,9
NV	5 s	63 A	319,1
NV	5 s	80 A	447,9
NV	5 s	100 A	585,4
NV	5 s	125 A	765,1
NV	5 s	160 A	947,9
NV	5 s	200 A	1354,5
NV	5 s	250 A	1590,6
NV	5 s	315 A	2272,9
NV	5 s	400 A	2766,1
NV	5 s	500 A	3952,7
NV	5 s	630 A	4985,1
NV	5 s	710 A	6423,2
NV	5 s	800 A	7252,1
NV	5 s	1000 A	9146,2
NV	5 s	1250 A	13070,1
gG	35 ms	2 A	32,5
gG	35 ms	4 A	65,6
gG	35 ms	6 A	102,8
gG	35 ms	10 A	165,8
gG	35 ms	13 A	193,1
gG	35 ms	16 A	206,9
gG	35 ms	20 A	276,8
gG	35 ms	25 A	361,3
gG	35 ms	32 A	539,1
gG	35 ms	35 A	618,1
gG	35 ms	40 A	694,2
gG	35 ms	50 A	919,2
gG	35 ms	63 A	1217,2
gG	35 ms	80 A	1567,2

	Augläggzoit der	Strombomocoung	Unbeeinflusster Kurzschlussstrom
Sicherungstyp	Sicherung	der Sicherung	(A) unterer Wert
aG	35 ms	100 A	2075.3
gg	0.1 s	2 A	22.3
aG	0,1 s	4 A	46.4
aG	0,1 s	6 A	70
aG	0,1 s	10 A	115,3
gG	0,1 s	13 A	144,8
gG	0,1 s	16 A	150,8
gG	0,1 s	20 A	204,2
gG	0,1 s	25 A	257,5
gG	0,1 s	32 A	361,5
gG	0,1 s	35 A	453,2
gG	0,1 s	40 A	464,2
gG	0,1 s	50 A	640
gG	0,1 s	63 A	821,7
gG	0,1 s	80 A	1133,1
gG	0,1 s	100 A	1429
gG	0,2 s	2 A	18,7
gG	0,2 s	4 A	38,8
gG	0,2 s	6 A	56,5
gG	0,2 s	10 A	96,5
gG	0,2 s	13 A	117,9
gG	0,2 s	16 A	126,1
gG	0,2 s	20 A	170,8
gG	0,2 s	25 A	215,4
gG	0,2 s	32 A	307,9
gG	0,2 s	35 A	374
gG	0,2 s	40 A	381,4
gG	0,2 s	50 A	545
gG	0,2 s	63 A	663,3
gG	0,2 s	80 A	964,9
gG	0,2 s	100 A	1195,4
gG	0,4 s	2 A	15,9
gG	0,4 s	4 A	31,9
gG	0,4 s	6 A	46,4
gG	0,4 s	10 A	80,7
gG	0,4 s	13 A	100
gG	0,4 s	16 A	107,4
gG	0,4 s	20 A	145,5
gG	0,4 s	25 A	180,2
gG	0,4 s	32 A	271,7
gG	0,4 s	35 A	308,7
gG	0,4 s	40 A	319,1
gG	0,4 s	50 A	464,2
gG	0,4 s	63 A	545
gG	0,4 s	80 A	836,5
gG	0,4 s	100 A	1018

			Unbeeinflusster Kurzschlussstrom
Ciele en un metrum	Auslösezeit der	Strombemessung	(A)
Sicherungstyp	Sicnerung	der Sicherung	
gG	55	2 A	9,1
gG	55	4 A	10,7
gg	55	0 A 10 A	20,7
gg	55	10 A	40,4
go	53	15 A 16 A	<u> </u>
ge	5 5	20 A	86.7
ge	5 5	25 A	109.3
dG	5 s	32 A	159.1
aG	5 s	35 A	169.5
aG	5 s	40 A	190,1
qG	5 s	50 A	266,9
gG	5 s	63 A	319,1
gG	5 s	80 A	447,9
gG	5 s	100 A	585,4
В	35 ms	6 A	30
В	35 ms	10 A	50
В	35 ms	13 A	65
В	35 ms	16 A	80
В	35 ms	20 A	100
В	35 ms	25 A	125
В	35 ms	32 A	160
В	35 ms	40 A	200
В	35 ms	50 A	250
В	35 ms	63 A	315
В	0,1 s	6 A	30
В	0,1 s	10 A	50
В	0,1 s	13 A	65
В	0,1 s	16 A	80
В	0,1 s	20 A	100
В	0,1 s	25 A	125
В	0,1 s	32 A	160
В	0,1 s	40 A	200
В	0,1 s	50 A	250
В	0,1 s	63 A	315
В	0,2 s	6 A	30
В	0,2 s	10 A	50
В	0,2 s	13 A	65
В	0,2 s	16 A	80
В	0,2 s	20 A	100
B	0,2 s	25 A	125
B	0,2 s	32 A	160
В	0,2 s	40 A	200
В	0,2 s	50 A	250
В	0,2 s	63 A	315
В	0,4 s	6 A	30

			Unbeeinflusster Kurzschlussstrom
Sicherungstyp	Auslösezeit der Sicherung	Strombemessung der Sicherung	(A) unterer Wert
В	0,4 s	10 A	50
В	0,4 s	13 A	65
В	0,4 s	16 A	80
В	0,4 s	20 A	100
В	0,4 s	25 A	125
В	0,4 s	32 A	160
В	0,4 s	40 A	200
В	0,4 s	50 A	250
В	0,4 s	63 A	315
В	5 s	6 A	30
В	5 s	10 A	50
В	5 s	13 A	65
В	5 s	16 A	80
В	5 s	20 A	100
В	5 s	25 A	125
В	5 s	32 A	160
В	5 s	40 A	200
В	5 s	50 A	250
В	5 s	63 A	315
C	35 ms	0,5 A	5
C	35 ms	1 A	10
C	35 ms	1,6 A	16
	35 ms	2 A	20
	35 ms	4 A	40
	35 MS	6 A 10 A	60
C	35 MS	10 A	100
C	35 ms	15 A 16 A	150
C	35 ms	20 A	200
C C	35 ms	20 A 25 A	200
C	35 ms	20 A	320
C	35 ms	40 A	400
C	35 ms	50 A	500
C	35 ms	63 A	630
C	0.1 s	0.5 A	5
C	0,1 s	1 A	10
С	0,1 s	1,6 A	1
С	0,1 s	2 A	20
С	0,1 s	4 A	40
С	0,1 s	6 A	60
С	0,1 s	10 A	100
С	0,1 s	13 A	130
С	0,1 s	16 A	160
С	0,1 s	20 A	200
С	0,1 s	25 A	250
С	0,1 s	32 A	320

	Auslösezeit der	Strombemessung	Unbeeinflusster Kurzschlussstrom (A)
Sicherungstyp	Sicherung	der Sicherung	unterer Wert
С	0,1 s	40 A	400
С	0,1 s	50 A	500
С	0,1 s	63 A	630
С	0,2 s	0,5 A	5
С	0,2 s	1 A	10
С	0,2 s	1,6 A	1
С	0,2 s	2 A	20
С	0,2 s	4 A	40
С	0,2 s	6 A	60
С	0,2 s	10 A	100
C	0,2 s	13 A	130
C	0,2 s	16 A	160
C	0,2 s	20 A	200
C	0,2 s	25 A	250
C	0,2 s	32 A	320
C	0,2 s	40 A	400
C	0,2 s	50 A	500
C	0,2 s	63 A	630
C	0,4 s	0,5 A	5
C	0,4 s	1 A	10
C	0,4 s	1,6 A	1
C	0,4 s	2 A	20
	0,4 s	4 A	40
	0,4 s	6 A	60
	0,4 \$	10 A	100
C	0,4 \$	15 A	150
C	0,4 3	20 A	200
C C	0,4 3	20 A 25 A	200
C	0,4 3	20 A	320
C	0.4 s	40 A	400
C C	0.4 s	50 A	500
C	0,4 s	63 A	630
C	5 s	0.5 A	2.7
C	5 s	1 A	5.4
С	5 s	1.6 A	8,6
С	5 s	2 A	10.8
С	5 s	4 A	21,6
С	5 s	6 A	32,4
С	5 s	10 A	54
С	5 s	13 A	70,2
С	5 s	16 A	86,4
С	5 s	20 A	108
С	5 s	25 A	135
С	5 s	32 A	172,8
С	5 s	40 A	216

			Unbeeinflusster Kurzschlussstrom
Sicherungstyp	Auslosezeit der Sicherung	Strombemessung der Sicherung	(A) unterer Wert
C	5 s	50 A	270
С	5 s	63 A	340,2
K	35 ms	0,5 A	7,5
К	35 ms	1 A	15
K	35 ms	1,6 A	24
K	35 ms	2 A	30
K	35 ms	4 A	60
K	35 ms	6 A	90
K	35 ms	10 A	150
K	35 ms	13 A	195
K	35 ms	16 A	240
K	35 ms	20 A	300
K	35 ms	25 A	375
K	35 ms	32 A	480
K	0,1 s	0,5 A	7,5
K	0,1 s	1 A	15
K K	0,1 s	1,6 A	24
к К	0,1 s	2 A	30
ĸ	0,1 \$	4 A	60
ĸ	0,1 \$	0 A 10 A	90
K	0,1 5	10 A	100
ĸ	0,13	15 A 16 A	240
ĸ	0,13	20 A	300
K	0,1 5	20 A	375
K	0,1 s	32 A	480
K	0,2 s	0,5 A	7,5
K	0,2 s	1 A	15
К	0,2 s	1,6 A	24
К	0,2 s	2 A	30
К	0,2 s	4 A	60
К	0,2 s	6 A	90
K	0,2 s	10 A	150
K	0,2 s	13 A	195
K	0,2 s	16 A	240
K	0,2 s	20 A	300
K	0,2 s	25 A	375
K	0,2 s	32 A	480
K	0,4 s	0,5 A	7,5
K	0,4 s	1 A	15
K	0,4 s	1,6 A	24
K	0,4 s	2 A	30
K	0,4 s	4 A	60
K	0,4 s	6 A	90
K	0,4 s	10 A	150
ĸ	0,4 S	13 A	195

	Auslösezeit der	Strombemessung	Unbeeinflusster Kurzschlussstrom (A)
Sicherungstyp	Sicherung	der Sicherung	unterer Wert
K	0,4 s	16 A	240
К	0,4 s	20 A	300
К	0,4 s	25 A	375
K	0,4 s	32 A	480
D	35 ms	0,5 A	10
D	35 ms	1 A	20
D	35 ms	1,6 A	32
D	35 ms	2 A	40
D	35 ms	4 A	80
D	35 ms	6 A	120
D	35 ms	10 A	200
D	35 ms	13 A	260
D	35 ms	16 A	320
D	35 ms	20 A	400
D	35 ms	25 A	500
D	35 ms	32 A	640
D	0,1 s	0,5 A	10
D	0,1 s	1 A	20
D	0,1 s	1,6 A	32
D	0,1 s	2 A	40
D	0,1 s	4 A	80
D	0,1 s	6 A	120
D	0,1 s	10 A	200
D	0,1 s	13 A	260
D	0,1 s	16 A	320
D	0,1 s	20 A	400
D	0,1 s	25 A	500
D	0,1 s	32 A	640
D	0,2 s	0,5 A	10
D	0,2 s	1 A	20
D	0,2 s	1,6 A	32
D	0,2 s	2 A	40
D	0,2 s	4 A	80
D	0,2 s	6 A	120
D	0,2 s	10 A	200
D	0,2 s	13 A	260
D	0,2 s	16 A	320
D	0,2 s	20 A	400
D	0,2 s	25 A	500
D	0,2 s	32 A	640
D	0,4 s	0,5 A	10
D	0,4 s	1 A	20
D	0,4 s	1,6 A	32
D	0,4 s	2 A	40
D	0,4 s	4 A	80
D	0,4 s	6 A	120

Sicherungstyp	Auslösezeit der Sicherung	Strombemessung der Sicherung	Unbeeinflusster Kurzschlusstrom (A) unterer Wert
D	0,4 s	10 A	200
D	0,4 s	13 A	260
D	0,4 s	16 A	320
D	0,4 s	20 A	400
D	0,4 s	25 A	500
D	0,4 s	32 A	640
D	5 s	0,5 A	2,7
D	5 s	1 A	5,4
D	5 s	1,6 A	8,6
D	5 s	2 A	10,8
D	5 s	4 A	21,6
D	5 s	6 A	32,4
D	5 s	10 A	54
D	5 s	13 A	70,2
D	5 s	16 A	86,4
D	5 s	20 A	108
D	5 s	25 A	135
D	5 s	32 A	172,8

11 Anhang B

11.1 Zubehör für bestimmte Messungen

Die nachfolgende Tabelle listet standardmäßige und optionale Zubehörkomponenten für bestimmte Messungen auf. Das als optional gekennzeichnete Zubehör kann bei manchen Ausführungen auch standardmäßig sein. Bitte schauen Sie hierfür auf die Auflistung des standardmäßigen Zubehörs, oder wenden Sie sich für weitere Informationen an Ihren Händler.

Funktion	Geeignetes Zubehör		
Isolation	Universalpr üfkabel (A 1011)		
	Taster-Prüfspitze (A 1175)		
Durchgangsprüfung	Universalpr üfkabel (A 1011)		
	Taster-Prüfspitze (A 1175)		
	Fühlerprüfleitung 4 m (A 1012)		
Durchgangsprüfung 7 mA	Universalprüfkabel		
	Taster-Prüfspitze		
Leitungswiderstand	Universalprüfkabel		
	Taster-Stecker (A 1001)		
	Steckerkabel		
Fehlerschleifenwiderstand	Universalprüfkabel		
	Taster-Stecker (A 1001)		
	Steckerkabel		
Fehlerstromschutzprüfung			
Berührungsspannung	Universalpr üfkabel Taster-Stecker (A		
Auslösezeit	1001)		
Auslösestrom	Steckerkabel		
Fehlerschleifenwiderstand			
Autotest			
Phasenfolge	Universalprüfkabel		
	Dreiphasenkabel (A 1110)		
	Dreiphasenadapter (A 1111)		
Spannung, Frequenz	Universalprüfkabel		
	Taster-Stecker (A 1001)		
	Steckerkabel		
	Taster-Prüfspitze		
Erdungswiderstand (nur MI 3102)	Erdungsprüfset – 20 m:		
	Prüfleitung, schwarz 20 m (A1025)		
	Prüfleitung, grün, 20 m (A1177)		
	Prüfleitung, blau, 4.5 m (A1178)		
	Sonden (A1022)		
Sensor (nur MI 3102)	Beleuchtungssonde, Type B (A1172)		
	Beleuchtungssonde, Type C (A1173)		
TRMS Strom (nur MI 3102)	Stromzange, 0.5 mA ÷ 20 A (A1018)		
	Stromzange, 0.2 A ÷ 20 A (A1019)		
	□ Stromzange, 0.2 A ÷ 20 A (A1074) mit		
	Anschlusskabel (S 2025)		