UMB-Protokoll 1.0
Universal-Measurement-Bus
Kommunikationsprotokoll
für Meteorologische Sensoren

IRS31-UMB
VS20-UMB
R2S-UMB
WS400-UMB
WS600-UMB
ANACON-UMB
IRS21CON-UMB

PEWA Messtechnik GmbH

Weidenweg 21 58239 Schwerte

Tel.: 02304-96109-0 Fax: 02304-96109-88 E-Mail: info@pewa.de Homepage: www.pewa.de

Stand 10.12.2007 Protokoll-Version 1.0 Dokument-Version 1.5

G. LUFFT MESS- UND REGELTECHNIK GMBH

POSTFACH 4252 70719 FELLBACH TEL. 49 (711) - 51822-0 FAX 49 (711) - 51822-41

Inhaltsverzeichnis

1	Versior	nsgeschichte	4
2	Vorben	nerkung	6
	2.1 Ein	schränkung der Garantie	6
		menklatur	
	2.3 Da	tenformat und Byteorder im Kommunikationsprotokoll:	6
		ysikalische Anbindung und Hardwarestruktur	
		ftwareprotokoll	
		odukte	
3	UMB-B	inär-Protokoll (Version 1.0)	7
	3.1 Pro	otokoll-Stack (Framing)	
	3.1.1	Application Layer	
	3.1.2	Presentation Layer/Session Layer/Transport Layer	
	3.1.3	Network Layer	
	3.1.4	Data-Link Layer	
	3.1.5	Physical Layer	
	3.1.6	Timing Sensor	
	3.1.7	Timing Master	
	3.1.8	Zusammenfassung	
		pologie	
		ssen- und Geräte-ID	
	3.3.1	Beispiele für die Bildung von Adressen	
		C-Prüfsumme	
	3.5 Koi 3.5.1	mmandos (Datengramme)Übersicht der Kommandos	
	3.5.1	Hard- und Softwareversion (20h)	
	3.5.3	Geräteinformationen (2Dh)	
	3.5.4	EEPROM auslesen (21h)	
	3.5.5	EEPROM programmieren (22h)	
	3.5.6	EEPROM programmieren mit PIN (F0h)	
	3.5.7	Onlinedatenabfrage (23h)	
	3.5.8	Onlinedatenabfrage mehrere Kanäle (2Fh)	
	3.5.9	Offlinedatenabfrage (24h)	
	3.5.10	Reset / Default (25h)	
	3.5.11	Reset mit Verzögerung (2Eh)	
	3.5.12	Statusabfrage (26h)	
	3.5.13	letzte Fehlermeldung (2Ch)	16
	3.5.14	Uhrzeit / Datum setzten (27h)	17
	3.5.15	Uhrzeit / Datum auslesen (28h)	17
	3.5.16	Test- / Abgleichbefehl (29h)	
	3.5.17	Monitor (2Ah)	
	3.5.18	Protokollwechsel (2Bh)	
	3.5.19	neue Geräte-ID setzen (30h)	
		tus- und Errorcodes	
		tentypen	
	3.8 Me	sswerttypen	20

	3.9 Kan	albelegungen	21
	3.9.1	Kanalbelegung allgemeine Zuordnung	21
	3.9.2	Kanalbelegung Geräteklasse 1 Straßensensor	22
	3.9.3	Kanalbelegung Geräteklasse 2 Regensensor	23
	3.9.4	Kanalbelegung Geräteklasse 3 Sichtweitemesser	24
	3.9.5	Kanalbelegung Geräteklasse 4 Temperatur-Feuchte	25
	3.9.6	Kanalbelegung Geräteklasse 5 Windmesser	25
	3.9.7	Kanalbelegung Geräteklasse 6 universelle Messtransmitter	26
	3.9.8	Kanalbelegung Geräteklasse 7 Kompakt-Wetterstation	
	3.9.9	TLS-Kanalbelegung	
	3.10 E	inheitenliste	28
	3.10.1	Temperatur	28
	3.10.2	Feuchte	28
	3.10.3	Längen	28
	3.10.4	Geschwindigkeiten	28
	3.10.5	elektrische Größen	29
	3.10.6	Frequenz	29
	3.10.7	Druck	29
	3.10.8	Volumen	29
	3.10.9	Zeit	29
	3.10.10	Sonstige	29
	3.11 B	eispiel einer Binärprotokoll-Abfrage	30
	3.12 B	emerkungen zu Broadcast	31
4	UMB-AS	SCII-Protokoll	32
	4.1 Aufl	bau	32
	4.1.1	Übersicht der ASCII-Kommandos	32
	4.1.2	Onlinedatenabfrage (M)	32
	4.1.3	Protokollwechsel (X)	33
	4.1.4	Reset / Default (R)	33
	4.1.5	Reset mit Verzögerung (D)	33
	4.1.6	Geräteinformation (I)	33
	4.2 Erro	prcodes im ASCII-Protokoll	34
5	Anhang		35
	5.1 CR	C-Berechung	35
	5.1.1	Beispiel einer CRC-CCITT-Berechnung in C	35
	5.2 Auto	omatisches auslesen eines Netzwerks	37
	5.2.1	Hintergrund	
	5.2.2	Notwendige ID-Konfiguration der Sensoren	37
	5.2.3	Scannen des Netzwerkes	
	5.3 Date	en-Typen in UMB-Produkten nach TLS2002 FG3	
	5.3.1	Beispiel einer TLS-Messwertabfrage	
		unterstützte TLS-DE-Typen FG3	
	5.3.2		
	5.3.3	DE-Typ 70 "Zustand der Fahrbahnoberfläche" (FBZ)	42
	5.3.3 5.3.4	DE-Typ 70 "Zustand der Fahrbahnoberfläche" (FBZ) DE-Typ 71 "Niederschlagsart" (NS)	42 43
	5.3.3 5.3.4 5.3.5	DE-Typ 70 "Zustand der Fahrbahnoberfläche" (FBZ) DE-Typ 71 "Niederschlagsart" (NS) DE-Typ 140 "Türkontakt" (TK)	42 43 44
	5.3.3 5.3.4 5.3.5 5.3.6	DE-Typ 70 "Zustand der Fahrbahnoberfläche" (FBZ) DE-Typ 71 "Niederschlagsart" (NS)	42 43 44

1 Versionsgeschichte

Dokument- Version	Datum	Bearbeiter	Änderungsbeschreibung
0.0	24.11.2004	SR	Erstellung
0.1	14.06.2005	EES	erste Ausgabe
0.2	22.12.2005	EES	Aktualisierung Schnittstelle Hardware 2-draht
0.3	07.02.2006	EES	Umbenennung auf UMB, Ergänzung "Automatisches auslesen eines Netzwerks" und Geräteinformation
0.4	07.03.2006	EES	Nomenklatur ergänzt, Kommandoübersicht BC ergänzt
0.5	09.03.2006	EES	 Kommando Geräteinformation um E2-Größe und die Angabe der Art der Info in der Antwort erweitert Kanalbelegung um relative Messwerte erweitert
0.6	04.04.2006	EES	Einheitenliste ergänzt
1.0	12.04.2006	EES	- Messwerttypen ergänzt - Kommando Geräteinformation um Messwerttyp erweitert erste freigegebene Version!
1.1	19.05.2006	EES	- in die Antwort von Kommando Uhrzeit / Datum auslesen (28h) Statusbyte eingefügt
		SR	- Status 29h Unterspannung definiert.
		EES	 Kanalbelegung je Geräteklasse ergänzt In der Kanalbelegung TLS-Kodierungen und im Anhang die Liste der unterstützten DE-Typen nach FG3 ergänzt Logo eingefügt
1.2	18.07.2006	EES	 Status 2Ah Hardwarefehler definiert. Status 2Bh Fehler in der Messung definiert. Einheitenliste ergänzt (I/m²) Zeichensatz ASCII ergänzt Messwerttyp ,Summe' 14h definiert
		BEL	- R2S integriert
		EES	- Status 52h Channel Overrange definiert - Status 53h Channel Underrange definiert - Einheitenliste ergänzt (hPa Hektopascal)
		BEL	bei R2S Kanal 700 die Niederschlagsarten in Anlehnung an die WMO definiert
		EES	 - allg. Kanalbelegung 10500 für Impulse und 2000 für weitere TLS-Kanäle definiert - Messwerttyp 15h für ,vektorieller Mittelwert' definiert - TLS-Kanäle für ANACON ergänzt (LD und 2. Kanal) - Status-Codes für Kalibrierung ergänzt - Änderung der Antwort auf die TLS-Kanal-Abfrage (Anpassung an bestehende Implementierung!)
1.3	08.08.2006	EES	 - Antwortzeit des Kalibrier-Kommandos (29h) von kurz auf lang geändert - Status-Code 36h in ,Kanal deaktiviert' geändert - Datentyp der TLS-Kanäle in der allg. Kanalbelegung der Geräteklassen angepasst - Kapitel Kanalbelegung nach hinten verschoben - auf Grund von rechenintensiven Kanälen (z.B. ANACON) wird die Antwortzeit für Onlinedatenabfrage (23h) auf ,lang' geändert - Hinweis bei ,Onlinedatenabfrage mehrere Kanäle' (2Fh) im Bezug auf lange Antwortzeiten ergänzt - ANACON TLS-Kanal DE-Typ 66 TPT Taupunkt ergänzt - diverse Kanalbelegungen ergänzt - Kommando 29h in ,Testbefehl' umbenannt, da dieses nicht nur zum Abgleich, sonder auch zum Test diverser Gerätefunktionen verwendet wird

1.4	12.09.2006	EES	- Bemerkung ergänzt, dass im ASCII-Protokoll keine TLS-Kanäle zur Verfügung stehen
		SR	- Kanalbelegung Straßensensor. - Längeneinheit mil hinzugefügt
1.5	10.12.2007	EES	- Kommando ,set_new_id' verc 1.1 erweitert - Status-Code 28h um info erweitert - Einheit Knoten ergänzt
		BEL	Beim R2S Kanäle erweitert um die nicht-metrischen Einheiten inch und mil bzw. inch/h und mil/h (Kapitel 3.9.3 und 3.10.3 sowie 3.10.9)
		EES	- Kanalliste für ANACON-UMB ergänzt (abs. Feuchte und Druck) - Geräteklasse und Kanalliste für Kompaktwetterstation ergänzt - Produktliste ergänzt - Kanalbelegung Geräteklasse 6 universelle Messtransmitter für
		EES	Niederschlag und Impulse geändert - Produktbezeichnungen für die Kompaktwetterstationen geändert
			- Error-Code INIT_ERROR (2Ch) = Fehler bei der Geräteinitialisierung und OS_ERROR (2Dh) = Fehler im Betriebssystem ergänzt
			- Kanalbezeichnungen für abs. und rel. Luftdruck geändert

2 Vorbemerkung

Das hier beschrieben Protokolle wurden für Meteorologische Sensoren entwickelt und ermöglicht eine vereinheitlichte Kommunikation mit den unterschiedlichen Geräten wie z.B. IRS31-UMB, VS20-UMB und R2S-UMB.

2.1 Einschränkung der Garantie

Die in diesem Dokument beschriebene Methoden und Einstellungen erlauben eine über den Standard (PC-Software) hinausgehende Konfigurierbarkeit der Geräte. Bei der Wahl von unsinnigen Einstellungen kann es zum Verlust der spezifizierten Messgenauigkeit bis hin zum Geräteversagen kommen. Lufft behält sich vor, bei Anwendung der hier beschriebenen Verfahren die Garantie auf die Produkte einzuschränken.

2.2 Nomenklatur

Gerät: Der Begriff Gerät wird in diesem Dokument als Synonym für die Gerätefamilie der Meteorologische Sensoren wie z.B. IRS31, VS20 und R2S verwendet.

 $Hexa dezimal werte \ werden \ durch \ das \ Post fix \ , h' \ gekennzeichnet.$

Dezimalwerte werden durch das Postfix ,d' gekennzeichnet

Mit ,BC' sind Kommandos gekennzeichnet, welche als Broadcast abgesetzt werden können. ,NBC' steht für ,nicht broadcast-fähig' (siehe auch Bemerkungen zu Broadcast Seite 31).

2.3 Datenformat und Byteorder im Kommunikationsprotokoll:

LONG: LowLowByte LowHighByte HighLowByte HighHighByte

INT: LowByte HighByte

FLOAT: Nach IEEE Format (4bytes)

2.4 Physikalische Anbindung und Hardwarestruktur

Die Ansteuerung der Geräte in einem Netzwerk erfolgt über eine halbduplexe RS485-2-Draht-Schnittstelle. Der ISOCON besitzt zusätzlich eine RS232-Schnittstelle. Die Baudrate beträgt in der Werkseinstellung 19200 Baud mit 8 Datenbits, einem Stopbit und keiner Parität (8N1).

2.5 Softwareprotokoll

Die Konfiguration und Abfrage der Geräte erfolgt im Binärprotokoll. Da das System ohne Kollisionserkennung arbeitet, wird nach strengem Master-Slave-Prinzip gearbeitet. Zur Vereinfachung der Kommunikation kann speziell für die Messwerteabfrage auf ASCII-Protokoll umgeschaltet werden (wird derzeit aber noch nicht von allen Produkten unterstützt). Hierbei ist zu beachten, dass im ASCII-Protokoll keine Konfiguration der Geräte möglich ist und die Messwerte nicht CRC-gesichert sind. Weiter stehen hier keine TLS-Kanäle zur Verfügung.

2.6 Produkte

Diese Beschreibung gilt für folgende Produkte:

Produkt	Artikel-Nr.:	Beschreibung					
VS20-UMB	8366.U50	Sichtweitensensor					
R2S-UMB	8367.U01 8367.U02	Radar Regen Sensor für Niederschlag					
IRS31-UMB	8510.Uxxx	Intelligenter Fahrbahnsensor					
WSx-UMB		Kompakt-Wetterstationen					
ANACON-UMB	8160.UANA	UMB Analog Transmitter					
IRS21CON-UMB	8410.UISO	UMB Schnittstellenkonverter für IRS21					
LCOM							

3 UMB-Binär-Protokoll (Version 1.0)

Um die logischen Schrittes des Header-Aufbaus zu abstrahieren, kann das OSI-Referenzmodell (Open Systems Interconnection) der International Standards Organisation (ISO) verwendet werden.

Die Datengramme durchlaufen die einzelnen Schichten (Layer) des Protokoll-Stacks und werden somit nach und nach mit den Header-Daten versehen. Auf diese Weise entsteht ein Frame, dessen maximale Länge auf 255 Bytes begrenzt ist. Für Nutzdaten stehen 210 Bytes zur Verfügung.

Bei der Übertragung von Word-Variablen gilt Little Endian (Intel, lowbyte first).

3.1 Protokoll-Stack (Framing)

3.1.1 Application Layer

Ein Kommando besteht aus mindestens zwei Zeichen: Dem Kommando <cmd> und der Versionsnummer des Kommandos <verc>. Die optionale Payload kann bis zu 210 Zeichen beinhalten. Der Wertebereich eines Bytes der Payload beträgt 0 bis 255.

1	2	3 - 4	5 - 6	7	8	9	10	11 (8 + len) optional	9 + Ien	10 + len 11 + len	12 + len
						<cmd></cmd>	<verc></verc>	<payload></payload>			

3.1.2 Presentation Layer / Session Layer / Transport Layer

Die Dienste der Schichten 4 (Transport Layer, Transportschicht), 5 (Session Layer, Kommunikationssteuerschicht) und 6 (Presentation Layer, Präsentationsschicht) werden nicht benötigt und sind somit transparent.

3.1.3 Network Layer

Die Adressierung erfolgt über eine 16-Bit Adresse. Wie diese Adressen gebildet werden ist auf Seite 11 beschrieben.

Dem von der übergeordneten Schicht erhaltenen Datengramm wird in der Netzwerkschicht (Network Layer) die Empfänger- (<to>) und Absender-Adresse (<from>) hinzugefügt. Die Versionsnummer <ver> bezeichnet die Struktur des Headers und ist die Versionsnummer des Binärprotokolls (Version 1.0). Dabei stellt das obere Nibble die Versionsnummer und das untere Nibble die Revisionsnummer dar.

Beispiel: Version 1.0 \rightarrow <ver> = 10h = 16d

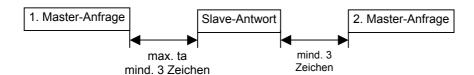
1	2	3 - 4	5 - 6	7	8	9	10	11 (8 + len) optional	9 + Ien	10 + len 11 + len	12 + len
	<ver></ver>	<to></to>	<from></from>			<cmd></cmd>	<verc></verc>	<payload></payload>			

3.1.4 Data-Link Layer

Zur Kennzeichnung des Datenrahmens werden 4 Steuerzeichen verwendet: SOH (01h), STX (02h), ETX (03h), EOT (04h).

SOH (Start Of Header) markiert den Beginn des Datengramms und des Headers. Das Steuerzeichen wird gefolgt von der Header-Versionsnummer. Sie legt das Format des Datengramms fest und lässt Raum für spätere Erweiterungen.

1	2	3 - 4	5 - 6	7	8	9	10	11 (8 + len) optional	9 + len	10 + len 11 + len	12 + len
SOH	<ver></ver>	<to></to>	<from></from>	<len></len>	STX	<cmd></cmd>	<verc></verc>	<payload></payload>	ETX	<cs></cs>	EOT


3.1.5 Physical Layer

2-Draht RS485, Standard-Baudrate: 19200 Baud, 8 Datenbits, 1 Stoppbit, keine Parität.

3.1.6 Timing Sensor

Für die Implementierung des Protokolls im Sensor werden folgende Punkte festgelegt:

- Bei kritischen Messungen kann der Empfangsinterrupt gesperrt werden.
- Ein Sensor (Slave) muss bei empfangenem Kommando spätestens nach der Zeit ta mit dem Senden der Antwort beginnen, jedoch nicht früher als die Mindestpause von 3 Zeichen. Dauert bei der Onlineabfrage die Messung länger, wird der zuletzt gespeicherte Messwert ausgegeben und nach der Abfrage gemessen.
- die Antwortzeiten (ta) sind in 2 Klassen aufgeteilt:
 - Standart: die Antwortzeit ta ist maximal 50 ms;
 - Lang: bei bestimmten Kommandos ist eine längere Verarbeitungszeit notwendig.
 Die maximale Antwortzeit ta beträgt hier 500 ms. Diese Kommandos sind entsprechen gekennzeichnet.
- Überschreitet ein Kommando die zulässige Antwortzeit antwortet das Gerät nicht; es kann jedoch nicht davon ausgegangen werden, dass das Kommando nicht verarbeitet wurde, da es z. B. passieren könnte, dass während der Ausführung des Kommandos die Zeit abläuft!!

3.1.7 Timing Master

- Es muss ein strenges **Master-Slave-Prinzip** eingehalten werden. (pro System darf es nur einen Master geben!)
- nach dem Empfang einer Slave-Nachricht muss der Master Mindestpause von 3 Zeichen einhalten.
- nach absetzten eines Broadcasts darf der nächste Befehl frühestens nach 500 ms erfolgen.
- Bei speziellen Sensoren kann ein Retry notwendig sein. Die empfohlene Anzahl der Retrys ist 3. Der Abstand der Nachrichten muss mindestens 500 ms betragen, jedoch in Summe nicht länger als 3 s.

3.1.7.1 Timeoutzeit Master

Nach Ablauf dieser Zeit kann der Master vom Verlust der Nachricht ausgehen und mit den Retrys beginnen.

bei einer direkten RS232-Verbindung betragen die Timeoutzeiten für

Kommandos mit Standart Antwortzeit: 60 msKommandos mit Antwortzeit Lang: 510 ms

ACHTUNG:

Erfolgt die Abfrage z.B. über Ethernet oder GPRS muss die Timeoutzeit entsprechend der Laufzeit des verwendeten Mediums angepasst werden. Hierzu sollen die Timeoutzeiten in der Konfiguration der Master-Software einstellbar sein.

3.1.8 Zusammenfassung

Zur Übersicht ist hier der kompletter Frame abgebildet:

1	2	3 - 4	5 - 6	7	8	9	10	11 (8 + len) optional	9 + len	10 + len 11 + len	12 + len
SOH	<ver></ver>	<to></to>	<from></from>	<len></len>	STX	<cmd></cmd>	<verc></verc>	<payload></payload>	ETX	<cs></cs>	EOT

SOH Steuerzeichen für den Start eines Frames (01h) 1 Byte

<ver> Header-Versionsnummer, Bsp.: V 1.0 → <ver> = 10h = 16d; 1 Byte

<to> Empfänger-Adresse, 2 Bytes <from> Absender-Adresse, 2 Bytes

<le>> Anzahl der Datenbytes zwischen STX und ETX; 1 Byte

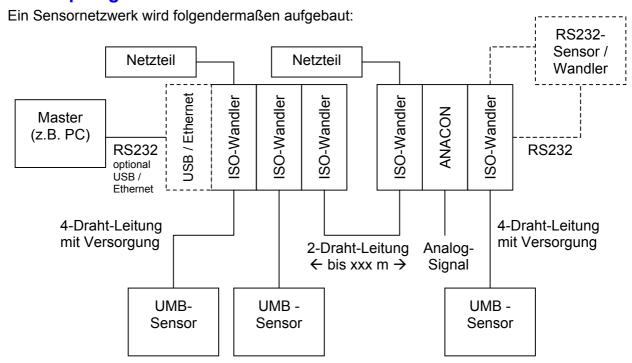
STX Steuerzeichen für den Start der Nutz-Datenübertragung (02h); 1 Byte

<md> Befehl; 1 Byte

<verc> Versionsnummer des Befehls; 1 Byte

<payload> Datenbytes; 0 – 210 Byte

ETX Steuerzeichen für das Ende der Nutz-Datenübertragung (03h); 1 Byte


<cs> Checksumme, 16 Bit CRC; 2 Byte

EOT Steuerzeichen für das Ende des Frames (04h); 1 Byte

Steuerzeichen: SOH (01h), STX (02h), ETX (03h), EOT (04h).

3.2 Topologie

Master: der Master wird mit der im ISO-Wandler integrierten RS232-Schnittstelle verbunden. Optional gibt es noch ein Schnittstellen-Modul für USB und Ethernet via virtual COM-Port.

Sensor: die Sensoren werden über eine 4-Draht-Verbindung mit jeweils einem ISO-Wandler verbunden; weiter stellt der Wandler auch die Versorgungsspannung für den Sensor zur Verfügung

ISO-Wandler: die Wandler sind untereinander über anreihbare Steckverbinder gekoppelt. Um größere Distanzen zwischen ISO-Wandlern zu schaffen, können diese über die RS485-Schnittstelle miteinander verbunden werden.

Sensoren anderer Hersteller

Vorrausgesetzt ein Sensor eines anderen Herstellers arbeitet ebenfalls nach dem Master-Slave-Prinzip, kann dieser an die RS232-Schnittstelle eines ISO-Wandlers angeschlossen werden; weiter ist denkbar, dass über einen entsprechenden Wandler (z.B. Phoenix) auch Sensoren mit RS422/485/2-Draht/4-Draht so mit dem Messnetz verbunden werden können.

Messmodule

Für Sensoren ohne Daten-Schnittstelle (z.B. 0 - 1V oder 4 - 20mA) gibt es intelligente Messmodule, welche die Analog-Signale auf dem Bus zur Verfügung stellen.

3.3 Klassen- und Geräte-ID

Die Adressierung erfolgt über eine 16-Bit Adresse. Diese gliedert sich in eine Sensorklassen-ID und eine Geräte-ID.

Adresse	e (2 Bytes = 16 Bit)						
Bit 15 -	12 (obere 4 Bit)	Bit 11 – 0 (untere 12 Bit)					
Klasser	1-ID (0 bis 15)	Geräte-ID (0 – 4095)					
0	Broadcast	0	Broadcast				
1	Straßensensor	1 - 4095	verfügbar				
2	Regensensor						
3	Sichtweitemesser						
4	Temperatur-Feuchte						
5	Windmesser						
6	universelle Messtransmitter (z.B. ANACON)						
7	Kompakt-Wetterstation						
8							
9							
10							
11 - 14	Reserviert für Erweiterungen						
15	Master bzw. Steuergeräte						

Bei Klassen und Geräten ist jeweils die ID = 0 als Broadcast vorgesehen. So ist es möglich, ein Broadcast auf eine bestimmte Klasse zu senden. Dies ist allerdings nur sinnvoll möglich, wenn sich am Bus nur ein Gerät dieser Klasse befindet.

3.3.1 Beispiele für die Bildung von Adressen

Soll z.B. ein Straßensensor mit der Geräte-ID (Seriennummer) 0423 adressiert werden, geschieht das wie folgt:

Klassen-ID für Straßensensor ist 1 = 1h

Geräte-ID (Seriennummer) ist 0423 = 1A7h

Setzt man die Klassen- und Geräte-ID zusammen ergibt sich eine Adresse 11A7h = 4519d. weitere Beispiele:

Klassen-ID	Geräte-ID	Adresse	Erklärung
1h	1A7h (0423d)	11A7h (4519d)	Straßensensor mit der Geräte-ID 0423
0h	000h (0000d)	0000h (0d)	Broadcast an alle Geräte bzw. Sensoren.
1h	000h (0000d)	1000h (4096d)	Broadcast an alle Straßensensoren.
3h	4D2h (1234d)	34D2h (16522d)	Sichtweiten-Sensor mit Geräte-ID 1234

3.4 CRC-Prüfsumme

Die CRC-CCITT-Prüfsumme wird mit folgendem Polynom gebildet:

$$x^{16} + x^{12} + x^5 + 1$$
 (LSB first-Mode; Startwert FFFFh)

Die Prüfsumme wird über alle Bytes vor der Checksumme gebildet (1 ... 9 + len), also von SOH bis ETX jeweils einschließlich.

Für die Checksumme gilt die Bytefolge Little Endian.

Empfängt ein Gerät ein Frame mit falscher CRC erfolgt auf dieses Kommando keine Reaktion.

Programmbeispiel einer CRC-Berechnung befinden sich im Anhang.

3.5 Kommandos (Datengramme)

Aus Gründen der Übersichtlichkeit beschränkt sich die folgende Darstellung der Kommandos auf die Anwendungsschicht (Application Layer). Zur besseren Darstellung wird folgende Kurzform verwendet:

Hexadezimalwerte werden durch das Postfix ,h' gekennzeichnet. Zeichenketten stehen in doppelten Anführungszeichen und werden mit dem Null-Zeichen (00h) abgeschlossen. Beim Übertragen von Wörtern gilt die Bytefolge Little-Endian (Intel, lowbyte first). Platzhalter für syntaktische Einheiten sind durch spitze Klammern gekennzeichnet. Ist die Länge der Variable größer als 1 Byte, wird diese im Index ,n' angegeben.

3.5.1 Übersicht der Kommandos

sortiert nach <cmd>:

<cmd></cmd>	Beschreibung	ВС	AZ	IRS21 CON	VS20	R2S	ANA CON	WSx	IRS31
20h	Hard- und Softwareversion		k	•	•	•	•	•	•
21h	EEPROM auslesen		-	•	•	•	•	•	•
22h	EEPROM programmieren				•	•	•	•	•
23h	Onlinedatenabfrage		1	•	•	•	•	•	•
24h	Offlinedatenabfrage		k						
25h	Reset / Default	•	k	•	•	•	•	•	•
26h	Statusabfrage		k	•	•	•	•	•	•
27h	Uhrzeit / Datum setzen	•	k						
28h	Uhrzeit / Datum auslesen		k						
29h	Testbefehl		ı	•	•	•	•	•	
2Ah	Monitor		ı	•	•	•	•	•	•
2Bh	Protokollwechsel	•	k	•	•	•	•	•	•
2Ch	letzte Fehlermeldung		k	•	•	•	•	•	•
2Dh	Geräteinformation		k	•	•	•	•	•	•
2Eh	Reset mit Verzögerung	•	k	•	•	•	•	•	•
2Fh	Onlinedatenabfrage mehrere Kanäle		ı	•	•	•	•	•	•
30h	neue Geräte-ID dauerhaft setzen (verc 1.0)	•	k		•	•	•	•	•
30h	neue Geräte-ID temporär setzen (verc 1.1)	•	k				•	•	
40h – 7Fh	reserviert für gerätespezifische Kommandos (siehe Gerätebeschreibung)			•	•		•	•	•
80h – 8Fh	reserviert für Entwicklung			•	•		•	•	•
F0h	EEPROM programmieren mit PIN		Į		•		•	•	•

AZ = Antwortzeit; k = kurz; I = lang

BC = broadcast-fähiges Kommando

ACHTUNG: ein Gerät (Sensor) akzeptiert ein Kommando nur, wenn es **von einem Master** gesendet wurde (Einhaltung Master-Slave-Prinzip).

3.5.2 Hard- und Softwareversion (20h)

Kommando <cmd>: 20h (NBC)

Kommandoversion <verc>: 1.0
Daten <payload>: keine

Beschreibung: Mit dem Kommando wird vom angesprochenen Gerät die Hard- und

Softwareversion angefordert.

Aufruf: 20h_{10h}[]

Antwort: 20h_{10h}[00h, <hardware>, <software>]

Beispiel: SW-Version 2.3 → <software> = 17h = 23d

HW-Version 6 \rightarrow <hardware> = 06h = 6d

3.5.3 Geräteinformationen (2Dh)

Kommando <cmd>: 2Dh (NBC)

Kommandoversion <verc>: 1.0

Daten <payload>: <info>, <option>ⁿ

Beschreibung: dieses Kommando gibt folgende Geräteinformationen zurück:

Aufruf: 2Dh_{10h}[<info>, <option>ⁿ]

<info> Art der gewünschten Information

<option>ⁿ optional sind weitere Angaben notwendig

<info></info>	<option></option>	Beschreibung	<answer></answer>		
10h	keine	Gerätebezeichnung	 z.B. ,Visibility-Sensor VS20'		
11h	keine	Gerätebeschreibung	 z.B. ,Sichtweite A92 West'		
12h	keine	Hard- und Softwareversion	<hardware>, <software> Version 2.3 = 17h = 23d</software></hardware>		
13h	keine	erweiterte Versions-Info	<lfdnr>², <mmjj>², <projekt>², <stüli>, <splan>, <hardware>, <software>, <e2version>, <geräteversion>²</geräteversion></e2version></software></hardware></splan></stüli></projekt></mmjj></lfdnr>		
14h	keine	Größe des EEPROM	<e2_size>²</e2_size>		
15h	keine	Anzahl verfügbare Kanäle	<channels>2, <blocks></blocks></channels>		
16h	<blook></blook>	Nummern der Kanäle	<blook>, <channels>, [<channel>²]<channels></channels></channel></channels></blook>		
20h	<channel>2</channel>	Messgröße des Kanals	<pre><channel>², <messgröße>²0</messgröße></channel></pre> z.B. ,visibility'		
21h	<channel>2</channel>	Messbereich des Kanals	<channel>2, <min>n, <max>n Werte wie Kanal</max></min></channel>		
22h	<channel>2</channel>	Messeinheit des Kanals	<pre><channel>², <einheit>¹5</einheit></channel></pre> z.B. ,m'		
23h	<channel>2</channel>	Datentyp des Kanals	<pre><channel>², <date_typ></date_typ></channel></pre> z.B. 16h für float		
24h	<channel>2</channel>	Messwerttyp	<pre><channel>², <mw_typ></mw_typ></channel></pre> z.B. 13h für Mittelwert		
30h	<channel>2</channel>	komplette Kanalinfo	<pre><channel>², <messgröße>²0, <einheit>¹5, <mw_typ>, <date_typ>, <min>¹, <max>¹</max></min></date_typ></mw_typ></einheit></messgröße></channel></pre>		

Antwort: $2Dh_{10h}[00h, <info>, <answer>]$

Anmerkung: bei der Abfrage der Nummern der Kanäle (16h) werden bis zu 100 Kanäle zu einem Block (beginnend mit Block 0) zusammengefasst. Hat ein Sensor mehr als z.B. 100 Kanäle, so gibt es entsprechend mehrere Blöcke. Die Anzahl der Blöcke wird bei der Abfrage der Anzahl der verfügbaren Kanäle (15h) angegeben.

Bei der Abfrage des Messbereich des Kanals (21h) oder der kompletten Kanalinfo (30h) hängt die Länge n von min und max vom Datentyp ab. (Siehe 3.7 Datentypen)

3.5.4 EEPROM auslesen (21h)

Kommando <cmd>: 21h (NBC)

Kommandoversion <verc>: 1.0

Daten <payload>: <start>2, <length>

Beschreibung: Mit dem Kommando wird die Übertragung von <length> Bytes ab der

Speicherstelle <start> aus dem EEPROM begonnen.

Aufruf: $21h_{10h}[<start>^2, <length>]$

Antwort: $21h_{10h}[00h, <start>^2, <length>, <data^{<length>}>]$

Antwortzeit: lang

Bemerkung: Die maximale Anzahl von Bytes (<length>) beträgt 200!

3.5.5 EEPROM programmieren (22h)

Kommando <cmd>: 22h (NBC)

Kommandoversion <verc>: 1.0

Daten <payload>: <start>2, <length>, <data><length>

Beschreibung: Mit dem Kommando wird ein Datenblock <data> der Länge <length> Bytes an den Empfänger übertragen. Dieser wird ab der Adresse <start> in das EEPROM geschrieben. Wenn alle Bytes programmiert sind, wird der Absender des Kommandos durch eine Quittung über den Erfolg der Aktion informiert.

Aufruf: 22h_{10h}[<start>², <length>, <data><length>]

Antwort: 22h_{10h}[00h]

Antwortzeit: lang

Bemerkung: Da die maximale Zeit bis zur Antwort der Gerätes auf 50ms begrenzt ist, ist die maximale Anzahl von Bytes (<length>) vom Gerät abhängig, da es unterschiedlich lange dauern kann bis das EEPROM programmiert ist. Wird eine Anzahl von Bytes angegeben welche von dem Gerät nicht verarbeitet werden kann, wird die maximalle Anzahl im Errorcode angegeben.

Im EEPROM gibt es schreibgeschützte Speicherstellen, welche nicht beschrieben werden können.

3.5.6 EEPROM programmieren mit PIN (F0h)

Kommando <cmd>: F0h (NBC)

Kommandoversion <verc>: 1.0

Daten <payload>: <pin>2, <start>2, <length>, <data><length>

Beschreibung: wie Kommando 22h; ermöglicht jedoch auch das Beschreiben geschützter

E2-Adressen.

Aufruf: F0h_{10h}[<pin> 2 , <start> 2 , <length>, <data> $^{<$ length>}]

Antwort: $F0h_{10h}[00h]$

Antwortzeit: lang

ACHTUNG!! Dieses Kommando ist ausschließlich für den internen Gebrauch bei Fa. Lufft für die Werkseinstellung vorgesehen! Bei unsachgemäßem Gebrauch kann das Gerät unbrauchbar gemacht oder beschädigt werden! (siehe auch Seite 6 Einschränkung der Garantie!!) Dieses Kommando ist nicht für den Endanwender bestimmt; dieser kann alle notwendigen Einstellungen des Geräts mit Hilfe der PC-Software von Fa. Lufft erledigen.

3.5.7 Onlinedatenabfrage (23h)

Kommando <cmd>: 23h (NBC)

Kommandoversion <verc>: 1.0

Daten <payload>: <channel>2

Beschreibung: Mit dem Kommando wird ein Messwert eines bestimmten Kanals abgefragt.

Aufruf: $23h_{10h}[<channel>^2]$

Antwort: $23h_{10h}[00h, <channel>^2, <type>, <value>^n]$

Antwortzeit: lang

<channel>2 gibt die Kanalnummer an

<type> gibt den Datentyp der Ausgabe an; davon hängt die Länge von <value> ab

(siehe Seite 20 - Datentypen)

<*value*>ⁿ abgefragter Wert

Bemerkung: In der Gerätebeschreibung ist spezifiziert, auf welchem Kanal welcher Messwert in welchem Format ausgegeben wird.

3.5.8 Onlinedatenabfrage mehrere Kanäle (2Fh)

Kommando <cmd>: 2Fh (NBC)

Kommandoversion <verc>: 1.0

Daten <payload>: <anzahl>, <channel>²

Beschreibung: Mit dem Kommando können mehrere Kanäle mit einem Aufruf abgefragt werden. Für jeden Kanal wird ein Sub-Telegramm ausgegeben.

Aufruf: 2Fh_{10h}[<anzahl>, <channel>^{2 x <anzahl>}]

<anzahl> Anzahl der abgefragten Kanäle <channel>² gibt die Kanalnummern an

Antwort: $2Fh_{10h}[00h, \langle anzahl \rangle, \{\langle sub-len \rangle, 00h, \langle channel \rangle^2, \langle type \rangle, \langle value \rangle^n\}^{\langle anzahl \rangle}]$

Antwortzeit: land

<sub-len> gibt an, wie viele Bytes dieses Sub-Telegramm enthält; wenn das nachfolgende

Status-Byte z.B., Value Overflow' anzeigt, dann entfallen <type> und <value>ⁿ

und der nächste Kanal folgt

<type> gibt den Datentyp der Ausgabe an; davon hängt die Länge von <value> ab

(siehe Seite 20 - Datentypen)

<*value*>ⁿ abgefragter Wert

Bemerkung: In der Gerätebeschreibung ist spezifiziert, auf welchem Kanal welcher Messwert in welchem Format ausgegeben wird. Es können maximal 20 Kanäle abgefragt werden.

<u>ACHTUNG!!</u> bei rechenintensiven Kanälen, wie z.B. die vektorielle Mittelwertbildung für Wind im ANACON, kann die Antwortzeit 'lang' unter Umständen nicht für die Ausgabe von mehreren Kanälen ausreichen. Antwortet der Sensor nicht auf die Anfrage, muss die Anzahl der Kanäle oder die Anzahl der Werte in der Mittelwertbildung reduziert werden!!

3.5.9 Offlinedatenabfrage (24h)

Kommando <cmd>: 24h (NBC)

Kommandoversion <verc>: 1.0

derzeit nicht spezifiziert!!

3.5.10 Reset / Default (25h)

Kommando <cmd>: 25h (BC)
Kommandoversion <verc>: 1.0
Daten <payload>: <reset>

Beschreibung: Mit dem Kommando wird ein Softwarereset ausgelöst. Alternativ kann vor dem Reset ein bestimmter Zustand wiederhergestellt werden.

Aufruf: 25h_{10h}[<reset>]

<reset> 10h löst Softwarereset aus

11h Auslieferungszustand wiederherstellen + Softwarereset

12h Geräte-ID auf Auslieferungszustand wiederherstellen + Softwarereset

13h Gerätespezifisches Kommando (siehe jeweiliges Pflichtenheft)

Antwort: $25h_{10h}[00h]$

Bemerkung: Die Antwort erfolgt unmittelbar vor dem Reset.

3.5.11 Reset mit Verzögerung (2Eh)

Kommando <cmd>: 2Eh (BC)

Kommandoversion <verc>: 1.0
Daten <payload>: <delay>

Beschreibung: Mit dem Kommando wird ein Softwarereset nach Ablauf der Verzögerungszeit <delay> ausgelöst (z.B. für Firmware-Update).

Aufruf: 2Eh_{10h}[<delay>]

<delay> Verzögerungszeit in Sekunden (max. 255)

Antwort: $2Eh_{10h}[00h]$

Bemerkung: Die Antwort erfolgt zu Beginn der Verzögerungszeit.

3.5.12 Statusabfrage (26h)

Kommando <cmd>: 26h (NBC)

Kommandoversion <verc>: 1.0
Daten <payload>: keine

Beschreibung: auslesen des aktuellen Status- bzw. Errorcodes; damit lässt sich das Gerät abfragen, ob es fehlerfrei funktioniert.

Aufruf: 26h_{10h}[]

Antwort: 26h_{10h}[00h, <status>]

3.5.13 letzte Fehlermeldung (2Ch)

Kommando <cmd>: 2Ch (NBC)

Kommandoversion <verc>: 1.0
Daten <payload>: keine

Beschreibung: gibt den Errorcode der letzten Antwort des Gerätes im Bezug auf die

Kommunikation aus. z.B. ungültige Parameter

Aufruf: $2Ch_{10h}[]$

Antwort: $2Ch_{10h}[00h, <error>]$

3.5.14 Uhrzeit / Datum setzten (27h)

Kommando <cmd>: 27h (BC)

Kommandoversion <verc>: 1.0

Daten <payload>: <unixtime>4

Beschreibung: setzt Datum und Uhrzeit des angesprochenen Gerätes.

Aufruf: $27h_{10h}[<unixtime>^4]$

Antwort: 27h_{10h}[00h]

Bemerkung: Unixtime ist die 4-Byte Hexadezimalzahl mit dem niederwertigsten Byte (LSB)

zuerst, die den Sekunden seit dem 1.1.1970 0:00 UTC entspricht.

3.5.15 Uhrzeit / Datum auslesen (28h)

Kommando <cmd>: 28h (NBC)

Kommandoversion <verc>: 1.0
Daten <payload>: keine

Beschreibung: auslesen von Datum und Uhrzeit des angesprochenen Gerätes.

Aufruf: 28h_{10h}[]

Antwort: $28h_{10h}[00h, <unixtime>^4]$

Bemerkung: Unixtime ist die 4-Byte Hexadezimalzahl mit dem niederwertigsten Byte (LSB)

zuerst, die den Sekunden seit dem 1.1.1970 0:00 UTC entspricht.

3.5.16 Test- / Abgleichbefehl (29h)

Kommando <cmd>: 29h (NBC)

Kommandoversion <verc>: 1.0

Daten <payload>: <pin>², <function>, <data>ⁿ

Beschreibung: dieses Kommando dient zum Abgleich und zum Test des Geräts

Aufruf: $29h_{10h}[<pin>^2, <function>, <data>^n]$ **Antwort:** $29h_{10h}[00h, ..., ...]$ (Gerätespezifisch!!)

Antwortzeit: bis zu 4 x lang!

ACHTUNG!! Dieses Kommando ist ausschließlich für den internen Gebrauch bei Fa. Lufft für die Werksprüfung vorgesehen! Bei unsachgemäßem Gebrauch kann das Gerät unbrauchbar gemacht werden! (siehe auch Seite 6 Einschränkung der Garantie!!) Die Testfunktionen sind in der Gerätebeschreibung enthalten.

3.5.17 Monitor (2Ah)

Kommando <cmd>: 2Ah (NBC)

Kommandoversion <verc>: 1.0

Daten <payload>: <monitor>ⁿ

Beschreibung: Mit Hilfe von Monitorbefehlen lassen sich mit der PC-Software gerätespezifische Funktionen ausführen (siehe jeweilige Gerätebeschreibung).

Aufruf: $29h_{10h}[$ <monitor-befehl>ⁿ] **Antwort:** $29h_{10h}[$ 00h, <antwort>ⁿ]

Antwortzeit: lang

ACHTUNG!! Dieses Kommando ist ausschließlich für den internen Gebrauch bei Fa. Lufft vorgesehen! Bei unsachgemäßem Gebrauch kann das Gerät unbrauchbar gemacht oder zerstört werden.

Dieses Kommando ist in der jeweiligen Gerätebeschreibung spezifiziert.

3.5.18 Protokollwechsel (2Bh)

Kommando <cmd>: 2Bh (BC)

Kommandoversion <verc>: 1.0
Daten <payload>: <type>

Beschreibung: schaltet das Gerät temporär auf ein anderes Protokoll um.

Aufruf: $2Bh_{10h}[<type>]$

<type> 10h ASCII-Protokoll

Antwort: 2Bh_{10h}[00h]

ACHTUNG!! Unmittelbar nach der Antwort kann das Gerät nur noch im neuen Protokoll angesprochen werden. Soll das Gerät wieder z.B. im Binär-Mode arbeiten, muss mit dem entsprechenden Kommando für Protokollwechsel in den Binär-Mode geschaltet werden!

Die Protokollumschaltung ist **temporär**!! Nach einem Reset oder einem gerätespezifischen Timeout kommuniziert das Gerät wieder in dem zuvor eingestellten Mode! Soll das Gerät dauerhaft im z.B. ASCII-Mode betrieben werden, muss die Gerätekonfiguration im EEPROM geändert werden!

3.5.19 neue Geräte-ID setzen (30h)

Kommando <cmd>: 30h (BC)

Kommandoversion <verc>: 1.0 Daten <payload>: <ID>²

Beschreibung: gibt dem Gerät dauerhaft eine neue ID.

Aufruf: $30h_{10h}[<ID>^2]$

<ID>2 neue Geräte-ID (1 – 4095)

Antwort: 30h_{10h}[00h]

ACHTUNG!! Unmittelbar nach der Antwort erfolgt ein Reset und danach kann das Gerät nur noch mit der neuen ID angesprochen werden. Achtung! Dieses Kommando ist broadcastfähig!! Dadurch lassen sich Geräte, deren ID unbekannt ist, mit einer neuen ID versehen. Dies macht jedoch nur Sinn, wenn maximal ein Gerät am Bus angeschlossen ist.

Kommandoversion <verc>: 1.1 Daten <payload>: <ID>²

Beschreibung: gibt dem Gerät temporär bis zum nächste Reset eine neue ID.

Aufruf: $30h_{11h}[<ID>^2]$

 $\langle ID \rangle^2$ neue Geräte-ID (1 – 4095)

Antwort: $30h_{11h}[00h]$

ACHTUNG!! danach kann das Gerät nur noch mit der neuen ID angesprochen werden, bis zum nächsten Reset. Achtung! Dieses Kommando ist broadcast-fähig!! Dadurch lassen sich Geräte, deren ID unbekannt ist, temporär mit einer neuen ID versehen. Dies macht jedoch nur Sinn, wenn maximal ein Gerät am Bus angeschlossen ist.

3.6 Status- und Errorcodes

Jedes Antworttelegramm enthält ein Status-Byte. Dieses gibt Aufschluss über den Erfolg oder Misserfolg des Kommandos. Bei bestimmten Errorcodes werden weitere Informationen übermittelt, welche eine exakte Fehleranalyse ermöglichen.

Wurde ein Kommando nicht erfolgreich verarbeitet wird eine Fehlermeldung ausgegeben, welche wie folgt aufgebaut ist:

<cmd><verc>[<status>, <info>ⁿ]

Gibt es zu einem Status keine weitere Information entfällt <info>ⁿ. Damit die Frame-Steuerzeichen nicht zu häufig auftreten, wird bei diesen Codes auf 01h bis 0Ah verzichtet.

Codes:

<status></status>	<info></info>	Define	Beschreibung
00h (0d)		OK	Kommando erfolgreich; kein Fehler; alles i.O.
10h (16d)		UNBEK_CMD	unbekanntes Kommando; wird von diesen Gerät nicht unterstützt
11h (17d)		UNGLTG_PARAM	ungültige Parameter
12h (18d)		UNGLTG_HEADER	ungültige Header-Version
13h (19d)		UNGLTG_VERC	ungültige Version des Befehls
20h (32d)		LESE_ERR	Lesefehler
21h (33d)		SCHREIB_ERR	Schreibfehler
22h (34d)	<maxlength></maxlength>	ZU_LANG	Länge zu groß; max. zulässige Länge wird in <maxlength> angegeben</maxlength>
23h (35d)		UNGLTG_ADRESS	ungültige Adresse / Speicherstelle
24h (36d)		UNGLTG_KANAL	ungültiger Kanal
25h (37d)		UNGLTG_CMD	Kommando in diesem Modus nicht möglich
26h (38d)		UNBEK_CAL_CMD	unbekanntes Test-/Abgleich-Kommando
27h (39d)		CAL_ERROR	Fehler bei der Kalibrierung
28h (40d)	<channel>2 (1</channel>	BUSY	Gerät nicht bereit; z.B. Initialisierung / Kalibrierung läuft
29h (41d)		LOW_VOLTAGE	Unterspannung
2Ah (42d)		HW_ERROR	Hardwarefehler
2Bh (43d)		MEAS_ERROR	Fehler in der Messung
2Ch (44d)		INIT_ERROR	Fehler bei der Geräteinitialisierung
2Dh (45d)		OS_ERROR	Fehler im Betriebssystem
30h (48d)		E2_DEFAULT_KONF	Fehler in der Konfiguration, Default-Konfiguration wurde geladen
31h (49d)		E2_CAL_ERROR	Fehler im Abgleich / der Abgleich ist ungültig, Messung nicht möglich
32h (50d)		E2_CRC_KONF_ERR	CRC-Fehler beim Laden der Konfiguration; Default- Konfiguration wurde geladen
33h (51d)		E2_CRC_KAL_ERR	CRC-Fehler beim Laden der Abgleich-Daten; Messung nicht möglich
34h (52d)		ADJ_STEP1	Abgleich Step 1
35h (53d)		ADJ_OK	Abgleich OK
36h (54d)		KANAL_AUS	Kanal deaktiviert

⁽¹ info <channel>² erfolgt nur bei Kommando Online-Messwertabfrage

_

50h (80d)	<channel>2</channel>	VALUE_OVERFLOW	Messgröße (+Offset) liegt außerhalb des eingestellten
51h (81d)	<channel>2</channel>	VALUE_UNDERFLOW	Darstellungsbereichs
52h (82d)	<channel>2</channel>	CHANNEL_OVERRANGE	Messwert (physikalisch) liegt außerhalb des
53h (83d)	<channel>2</channel>	CHANNEL_UNDERRANGE	Messbereichs (z.B. ADC-Overrange)
54h (84d)	<channel>2</channel>	DATA_ERROR	Datenfehler in den Messdaten oder keine gültigen Daten vorhanden
FFh (255d)		UNBEK_ERR	unbekannter Fehler

3.7 Datentypen

In diesem Protokoll werden z.B. für die Messwertabfrage folgende Datentypen verwendet:

<type></type>	Type Name	Define	Bytes	Range
10h (16d)	unsigned char	UNSIGNED_CHAR	1	0 255
11h (17d)	signed char	SIGNED_CHAR	1	-128 127
12h (18d)	unsigned short	UNSIGNED_SHORT	2	0 65.535
13h (19d)	signed short	SIGNED_SHORT	2	-32.768 32.767
14h (20d)	unsigned long	UNSIGNED_LONG	4	0 4.294.967.295
15h (21d)	signed long	SIGNED_LONG	4	-2.147.483.648 2.147.483.647
16h (22d)	float	FLOAT	4	±1.18E-38 ±3.39E+38 (7 digits)
17h (23d)	double	DOUBLE	8	±2.23E-308 ±1.79E+308 (15 digits)

Bemerkung: float und double in IEEE Format

3.8 Messwerttypen

In diesem Protokoll werden für die Messwertabfrage folgende Messwerttypen verwendet:

<type></type>	Type Name	Define	Beschreibung
10h (16d)	current	MWT_CURRENT	aktueller Messwert
11h (17d)	min	MWT_MIN	Minimalwert
12h (18d)	max	MWT_MAX	Maximalwert
13h (19d)	avg	MWT_AVG	Mittelwert
14h (20d)	sum	MWT_SUM	Summe
15h (21d)	vct	MWT_VCT	vektorieller Mittelwert

3.9 Kanalbelegungen

Es sind maximal 65535 Messkanäle adressierbar.

Die hier beschriebene Kanalbelegung gilt für die Onlinedatenabfrage im Binärprotokoll. Im ASCII-Protokoll werden alle Kanäle im Abbildungsnormal ausgegeben.

Der aktuelle Wert gibt den aktuell gemessenen Wert aus. Beim Mittelwert werden die Messwerte über den in der Konfiguration angegebenen Zeitraum gemittelt.

Achtung: Nicht alle Geräte einer Geräteklasse liefern sämtliche hier beschriebenen Kanäle. Die genaue Kanalbelegung des verwendeten Sensors ist in der Betriebsanleitung beschrieben.

Die Zusammenfassung der Kanalbelegungen in diesem Dokument dient dazu, dass UMB-Geräte der selben Klasse für die selben Messgrößen und Messbereiche die gleichen Kanäle verwenden.

3.9.1 Kanalbelegung allgemeine Zuordnung

Um die Messgröße leichter zu identifizieren, wird folgende Zuordnung der Kanäle empfohlen:

Kanal	Messgröße
0 - 99	reserviert
100 – 199	Temperatur
200 – 299	Feuchte
300 – 399	Druck (z.B. Luft)
400 – 499	Geschwindigkeit (z.B. Wind, Strömung)
500 – 599	Richtung (z.B. Wind)
600 – 699	metrische Werte (z.B. Wasserfilmhöhe in mm, Sichtweite in m)
700 – 799	logische Zustände (z.B. Türkontakt 0 / 1 = auf / zu)
800 – 899	relative Messwerte (z.B. Salzkonzentration)
900 – 999	frei
1000 – 1999	TLS-Kodierungen (siehe auch Seite 38 Kapitel 5.3)
2000 – 2999	TLS-Kodierungen für 2. Kanal (z.B. ANACON)
10000 – 10099	Spannung
10100 – 10199	Strom
10200 – 10299	Widerstand
10300 – 10399	Frequenz
10400 – 10499	Kapazität
10500 – 10599	Impulse
20000 – 29999	gerätespezifisch
65535	reserviert

3.9.2 Kanalbelegung Geräteklasse 1 Straßensensor

UMB-Kanal	Datentyp	Messgröße	Messbereich
Temperaturen			
100	unsigned short	Fahrbahnoberflächentemperatur im Abbildungsnormal	0 65520
101	float	Fahrbahnoberflächentemperatur in °C	-40 +80 °C
102	float	Fahrbahnoberflächentemperatur in °F	-40 +176 °F
110	unsigned short	Bodentemperatur Tiefe 1 im Abbildungsnormal	0 65520
111	float	Bodentemperatur Tiefe 1 in °C	-40 +80 °C
112	float	Bodentemperatur Tiefe 1 in °F	-40 +176 °F
120	unsigned short	Bodentemperatur Tiefe 2 im Abbildungsnormal	0 65520
121	float	Bodentemperatur Tiefe 2 in °C	-40 +80 °C
122	float	Bodentemperatur Tiefe 2 in °F	-40 +176 °F
Gefriertemperatur	•		
150	unsigned short	Gefriertemperatur im Abbildungsnormal	0 65520
151	float	Gefriertemperatur in °C	-40 0 °C
152	float	Gefriertemperatur in °F	-40 +30 °F
Wasserfilmdicke			
600	unsigned short	Wasserfilmdicke im Abbildungsnormal	0 65520
601	unsigned short	Wasserfilmdicke in µm	0 10000
602	float	Wasserfilmdicke in mil (= 1/1000 inch)	0 393,7
Salzkonzentration	1		
800	unsigned short	Salzkonzentration im Abbildungsnormal	0 65520
801	float	Salzkonzentration in Prozent	0,0 100,0 %
Fahrbahnzustand			
900	unsigned char	Definierter Fahrbahnzustand	0 99
901	unsigned char	Physikalischer Fahrbahnzustand	0 99
TLS Kanäle siehe	Seite 39 unterstütz	te TLS-DE-Typen FG3	

Die jeweiligen Abbildungsnormale beziehen sich auf den dazugehörigen Messbereich.

3.9.3 Kanalbelegung Geräteklasse 2 Regensensor

aktuell 100 101	fl t		
101	fl 4		
	float	Umgebungstemperatur in °C	-40°C+80°C
	float	Umgebungstemperatur in °F	-40°F+176°F
Niederschlagsart			
700	unsigned char	Niederschlagsart (ohne Einheit)	0d = kein Niederschlag 60d = Regen 67d = Eisregen 69d = Schneeregen 70d = Schnee 90d = Hagel
Niederschlagsmen	ge		
600	double	Liter / m²	0100.000 Liter/m²
610	double	Wasserfilmhöhe in mm pro m²	0100 mm
620	double	Wasserfilmhöhe in Inch	03937 Inch
630	double	Wasserfilmhöhe in mil	03 937 008 mil
601	float	Liter/m² seit letzter Abfrage	0100. Liter/m ²
611	float	Wasserfilmhöhe in mm seit letzter Abfrage	0100 mm
621	float	Wasserfilmhöhe in Inch seit letzter Abfrage	03.937 Inch
631	float	Wasserfilmhöhe in mil seit letzter Abfrage	03937 mil
1153	float	Niederschlagsintensität in Inch/h Abgeleitet aus Kanal 1053 (TLS-Code DE Typ 53 FG3)	07.874 Inch/h
1253	float	Niederschlagsintensität in mil/h Abgeleitet aus Kanal 1053 (TLS-Code DE Typ 53 FG3)	07 874 mil/h

3.9.4 Kanalbelegung Geräteklasse 3 Sichtweitemesser

UMB-Kanal		Datentyp	Messgröße	Messbereich	
aktuell	mittel				
Sichtweit	е				
600	650	float	in Meter	10 – 1000 Meter	
601	651	float	in Meter	10 – 2000 Meter	
602	652	float	in Kilometer	0,01 – 1,000 km	
603	653	float	in Kilometer	0,01 – 2,000 km	
604	654	float	in feet	32 – 3000 feet	
605	655	float	in feet	32 – 6500 feet	
606	656	float	in miles	0,006 – 0,600 miles	
607	657	float	in miles	0,006 – 1,200 miles	
608	658	unsigned short	im Abbildungsnormal	20 – 4000	
Umgebur	gstempe	ratur			
100	150	float	in °C	-40 - +80 °C	
101	151	lioat	in °F	-40 - +176 °F	
102	152	unsigned short	im Abbildungsnormal		
TLS Kanäle siehe Seite 39 unterstützte TLS-DE-Typen FG3					

Abbildungsnormale

Abbildungsnormal	Wertebereich Sichtweite
	0 – 32760 m
	0 – 32,76 km
	0 – 107480,315 feet
0 – 65520	0 – 20,3561203 miles
	Wertebereich Umgebungstemperatur
	-40 - +80 °C
	-40 - +176 °F

3.9.5 Kanalbelegung Geräteklasse 4 Temperatur-Feuchte

UMB-Kanal		Datentyp	Messgröße	Messbereich	
aktuell	mittel				
Temperat	ur				
Feuchte					
TLS Kanä	TLS Kanäle siehe Seite 39 unterstützte TLS-DE-Typen FG3				

Die Kanalliste ist noch nicht komplett und wird noch ergänzt.

3.9.6 Kanalbelegung Geräteklasse 5 Windmesser

UMB-Kanal		Datentyp	Messgröße	Messbereich		
aktuell	mittel					
Windrich	tung					
Windges	Windgeschwindigkeit					
TLS Kanäle siehe Seite 39 unterstützte TLS-DE-Typen FG3						

Die Kanalliste ist noch nicht komplett und wird noch ergänzt.

3.9.7 Kanalbelegung Geräteklasse 6 universelle Messtransmitter

	UMB-	Kanal	_				M	essberei	ch
akt	min	max	avg	spezial	Eingang	Messgröße	min	max	Einheit
Tempera	tur		<u> </u>			-		<u>I</u>	1
100	120	140	160		Α	temperature	-200,0	450,0	°C
105	125	145	165		Α	temperature	-328,0	842,0	°F
						'	,	,	
110	130	150	170			dewpoint	-200,0	450,0	°C
111	131	151	171			dewpoint	-328,0	842,0	°F
Feuchte				•		-			•
201	221	241	261		В	relative humidity	0,0	100,0	%
206	226	246	266		В	absolute humidity			g/m²
211	231	251	271		В	mixing ratio			g/kg
Druck									
300	320	340	360		Α	abs. air pressure	0	1200	hPa
305	325	345	365		Α	rel. air pressure	0	1200	hPa
301	321	341	361		В	abs. air pressure	0	1200	hPa
306	326	346	366		В	rel. air pressure	0	1200	hPa
Wind									
				vect. Avg					
400	420	440	460	480	Α	wind speed	0	100,0	m/s
405	425	445	465	485	Α	wind speed	0	360,0	km/h
410	430	450	470	490	Α	wind speed	0	223,7	mph
415	435	455	475	495	Α	wind speed	0	194,4	kts
501	521	541	561	581	В	wind direction	0	359,9	٥
Niedersc	hlag								
600					Α	precipitation absol.			mm
601					В	precipitation absol.			mm
620					Α	precipitation diff.			mm
621					В	precipitation diff.			mm
640					Α	precip. intens.			mm/h
641					В	precip. intens.			mm/h
Digitaleir	ngang			1					
700	720	740	760		Α	digital input	0	1	
701	721	741	761		В	digital input	0	1	
Spannun				1					
10000	10020	10040	10060		Α	voltage	0	1000	mV
10001	10021	10041	10061		В	voltage	0	1000	mV
Strom		•	•	1				1	,
10100	10120	10140	10160		Α	current	0	24	mA
10101	10121	10141	10161		В	current	0	24	mA
Widersta	nd	•	•	1				1	,
10200	10220	10240	10260		Α	resistance	0	2000	Ohm
10201	10221	10241	10261		В	resistance	0	2000	Ohm
Frequent		•	•	1				1	,
10300	10320	10340	10360		Α	frequency	10	10000	Hz
10301	10321	10341	10361		В	frequency	10	10000	Hz
Impulse				+			.	1	
10500					Α	impulse absol.	0	65520	pulse
10501					В	impulse absol.	0	65520	pulse
10520					Α	impulse diff.	0	65520	pulse
10521				•	В	impulse diff.	0	65520	pulse

Achtung: Welche Kanäle tatsächlich zur Verfügung stehen ist konfigurationsabhängig!

3.9.8 Kanalbelegung Geräteklasse 7 Kompakt-Wetterstation

UMB-Kanal						M	essberei	ch
akt	min	max	avg	spezial	Messgröße	min	max	Einheit
Tempera	tur							
100	120	140	160		temperature	-200,0	450,0	°C
105	125	145	165		temperature	-328,0	842,0	°F
	400	4=0	4=0					20
110	130	150	170		dewpoint	-200,0	450,0	°C
115	135	155	175		dewpoint	-328,0	842,0	°F
Feuchte								
200	220	240	260		relative humidity	0,0	100,0	%
205	225	245	265		absolute humidity			g/m³
210	230	250	270		mixing ratio			g/kg
Druck								
300	320	340	360		abs. air pressure	0	1200	hPa
305	325	345	365		rel. air pressure	0	1200	hPa
Wind								
				vect. Avg				
400	420	440	460	480	wind speed	0	100,0	m/s
405	425	445	465	485	wind speed	0	360,0	km/h
410	430	450	470	490	wind speed	0	223,7	mph
415	435	455	475	495	wind speed	0	194,4	kts
500	520	540	560	580	wind direction	0	359.9	0

Niederschlagsart			
700	Unsigned char	Ohne Einheit	0 = kein Niederschlag 60 = Regen 70 = Schnee
Niederschlagsmer	nge		
600	double	Liter / m²	0100 000 Liter/m²
620	double	Wasserfilmhöhe in mm	0100 000 mm
640	double	Wasserfilmhöhe in Inch	03937 Inch
660	double	Wasserfilmhöhe in mil	03 937 008 mil
605	float	Liter/m² seit letzter Abfrage	0100. Liter/m²
625	float	Wasserfilmhöhe in mm seit letzter Abfrage	0100 mm
645	float	Wasserfilmhöhe in Inch seit letzter Abfrage	03.937 Inch
665	float	Wasserfilmhöhe in mil seit letzter Abfrage	03937 mil
TLS Kanäle siehe	Seite 39 unterstütz	te TLS-DE-Typen FG3	

Achtung: Welche Kanäle tatsächlich zur Verfügung stehen ist davon abhängig um welchen Kompakt-Wetterstation -Typ es sich handelt!

3.9.9 TLS-Kanalbelegung

Diese Kanäle sind für die Ausgabe von Daten entsprechend der TLS-Typen nach TLS2002 DE-FG3 (Wetter- und Umfelddaten) vorgesehen. Die Kanalnummern entsprechen mit einem Offset von 1000 den DE-Typen FG3 (siehe auch 5.3 Daten-Typen in UMB-Produkten nach TLS2002 FG3).

z.B. Sichtweite:

FG3 DE-Typ 60 Ergebnismeldung Sichtweite SW Kanal 1060

3.10 Einheitenliste

Für alle UMB-Produkte werden folgende Einheiten für Messwerte verwendet. Diese werden u.a. bei der Ausgabe der Geräteinformation ausgegeben.

3.10.1 Temperatur

Einheit	Beschreibung	Bemerkung
°C	Grad Celsius	
°F	Grad Fahrenheit	
K	Kelvin	

3.10.2 Feuchte

Einheit	Beschreibung	Bemerkung
%rH	relative Feuchte	
g/kg	absolute Feuchte	
g/m³	absolute Feuchte	

3.10.3 Längen

Einheit	Beschreibung	Bemerkung
μm	Mikrometer	
mm	Millimeter	
cm	Zentimeter	
dm	Dezimeter	
m	Meter	
km	Kilometer	
in	Zoll (Inch)	1 Zoll = 25,4 mm
mil	Milli-Inch	1 mil = 1/1000 inch = 0,0254 mm
ft	Fuß (foot, feet)	1 foot = 0,3048 Meter
mi	Meile	1 Statute Mile der USA = 1,609344 km

3.10.4 Geschwindigkeiten

Einheit	Beschreibung	Bemerkung
m/s	Meter pro Sekunde	
km/h	Kilometer pro Stunde	
mph	miles per hour	Eine mph entspricht 1,609344 km/h oder 0,44704 m/s
kts	Knoten	1 Knoten = 1 Seemeile/Stunde = 1,852 km/h = 0,51444 m/s

3.10.5 elektrische Größen

Einheit	Beschreibung	Bemerkung
mV	Millivolt	
V	Volt	
mA	Milliampere	
Α	Ampere	

3.10.6 Frequenz

Einheit	Beschreibung	Bemerkung
Hz	Hertz	
kHz	Kilohertz	

3.10.7 Druck

Einheit	Beschreibung	Bemerkung
bar	Bar	
mbar	Millibar	
Pa	Pascal	
mPa	Millipascal	
hPa	Hektopascal	

3.10.8 Volumen

Einheit	Beschreibung	Bemerkung
m³	Kubikmeter	
I	Liter	

3.10.9 Zeit

Einheit	Beschreibung	Bemerkung
S	Sekunden	
μs	Mikrosekunden	

3.10.10 Sonstige

Einheit	Beschreibung	Bemerkung
%	Prozent	relativer Anteil
٥	Grad	Winkelangabe
mm/h	Millimeter pro Stunde	Niederschlagsintensität
l/m²	Liter pro Quadratmeter	Niederschlagsmenge
in/h Zoll(Inch) pro Stunde I		Niederschlagsintensität
mil/h	milli-Inch pro Stunde	Niederschlagsintensität

Zeichensatz nach ANSI-Tabelle (deutsch) codiert. Siehe auch Seite 45.

3.11 Beispiel einer Binärprotokoll-Abfrage

Soll z.B. ein Sichtweitesensor mit der Geräte-ID (Seriennummer) 0423 nach seiner Hardund Softwareversion von einem PC abgefragt werden, geschieht das wie folgt:

Sensor:

Klassen-ID für **Sichtweitensensor** ist 3 = 3h

Geräte-ID (Seriennummer) ist 0423 = 1A7h

Setzt man die Klassen- und Geräte-ID zusammen ergibt sich eine Ziel-Adresse 31A7h

PC:

Klassen-ID für **PC** (Master-Gerät) ist 15 = Fh

PC-ID ist z.B. 22 = 016h

Setzt man die Klassen- und PC-ID zusammen ergibt sich eine Absender-Adresse F016h

Die Länge <len> beträgt für den Befehl Hard- und Softwareversion abfragen 2d = 02h, da der Befehl nur aus 2 Byte besteht

Das Kommando für Hard- und Softwareversion abfragen ist 20h

Die Versionsnummer des Befehls ist 1.0 = 10h

Der Befehl hat keine <payload>

Die CRC beträgt 67BBh

Die komplette Anfrage an das Gerät:

SOH	<ver></ver>	<to< th=""><th>)></th><th><frc< th=""><th>m></th><th><len></len></th><th>STX</th><th><cmd></cmd></th><th><verc></verc></th><th>ETX</th><th><c< th=""><th>s></th><th>EOT</th></c<></th></frc<></th></to<>)>	<frc< th=""><th>m></th><th><len></len></th><th>STX</th><th><cmd></cmd></th><th><verc></verc></th><th>ETX</th><th><c< th=""><th>s></th><th>EOT</th></c<></th></frc<>	m>	<len></len>	STX	<cmd></cmd>	<verc></verc>	ETX	<c< th=""><th>s></th><th>EOT</th></c<>	s>	EOT
1	2	3	4	5	6	7	8	9	10	11	12	13	14
01h	10h	A7h	31h	16h	F0h	02h	02h	20h	10h	03h	BBh	67h	04h

Die komplette Antwort des Gerätes:

SOH	<ver></ver>	<t< th=""><th>0></th><th><frc< th=""><th>m></th><th><len></len></th><th>STX</th><th><cmd></cmd></th><th><verc></verc></th><th><status></status></th><th><hw></hw></th><th><sw></sw></th><th>ETX</th><th><c< th=""><th>s></th><th>EOT</th></c<></th></frc<></th></t<>	0>	<frc< th=""><th>m></th><th><len></len></th><th>STX</th><th><cmd></cmd></th><th><verc></verc></th><th><status></status></th><th><hw></hw></th><th><sw></sw></th><th>ETX</th><th><c< th=""><th>s></th><th>EOT</th></c<></th></frc<>	m>	<len></len>	STX	<cmd></cmd>	<verc></verc>	<status></status>	<hw></hw>	<sw></sw>	ETX	<c< th=""><th>s></th><th>EOT</th></c<>	s>	EOT
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
01h	10h	16h	F0h	A7h	31h	05h	02h	20h	10h	00h	10h	17h	03h	E0h	DDh	04h

Das Gerät hat also eine HW-Version 10h = 16d = V1.6 und eine SW-Version 2.3.

Mit Hilfe der Checksumme (DDE0h) kann die korrekte Datenübertragung überprüft werden.

ACHTUNG: Bei der Übertragung von Word-Variablen wie z.B. der Geräteadressen gilt Little Endian (Intel, lowbyte first). Das bedeutet erst das LowByte und dann das HighByte.

3.12 Bemerkungen zu Broadcast

Wird ein Gerät direkt mit Klassen- und Geräte-ID angesprochen, wird die im Kommando beschriebene Antwort zurückgegeben.

Wird ein Gerät mit Broadcast (Klassen- oder Geräte-ID ,0') angesprochen, wird auf das Kommando **NICHT** geantwortet, da bei Broadcast davon ausgegangen werden muss, dass mehrere Geräte gleichzeitig angesprochen werden und es sonst zu Kollisionen kommen würde.

Nicht alle Kommandos sind broadcastfähig, da es z.B. keinen Sinn macht eine Messwertabfrage an alle Geräte zu schicken da diese bei Broadcast nicht antworten. Ob ein Kommando broadcastfähig ist, wird durch 'BC' gekennzeichnet. 'NBC' steht für nicht broadcastfähig.

Eine sinnvolle Anwendung von Broadcast-Kommandos ist z.B. das Stellen von Datum / Uhrzeit. Somit kann mit einem Telegramm das komplette Netz aktualisiert werden.

4 UMB-ASCII-Protokoll

Über das ASCII-Protokoll kann auf einfache Weise mit Geräten im "read-only'-Mode kommuniziert werden. Eine Konfiguration ist jedoch nur über das Binär-Protokoll möglich.

Das ASCII-Protokoll dient ausschließlich zur Onlinedaten-Abfrage und ist nicht über eine CRC gesichert. Bei einem unverständlichen ASCII-Kommando reagiert das Gerät nicht! Im ASCII-Protokoll stehen keine TLS-Kanäle zur Verfügung!

4.1 Aufbau

Ein ASCII-Befehl wird durch das Zeichen ,&' eingeleitet und mit den Zeichen CR (0Dh) abgeschlossen. Zwischen den einzelnen Blöcken steht jeweils ein Leerzeichen (20h); dargestellt mit einem Unterstrich ,_'. Zeichen, die einen ASCII-Wert repräsentieren, stehen in einfachen Anführungszeichen.

4.1.1 Übersicht der ASCII-Kommandos

Befehl	Funktion		AZ	IRS21CON	VS20	R2S	ANACON	WSx	IRS31
M	Onlineabfrage		-	•	•		•		
Х	Wechselt in das Binär-Protokoll			•	•		•		
R	löst Softwarereset aus			•	•		•		
D	D Reset mit Verzögerung		k	•	•		•		
1	Geräteinformation		k	•	•		•		

4.1.2 Onlinedatenabfrage (M)

Beschreibung: Mit dem Kommando wird ein Messwert eines bestimmten Kanals abgefragt.

Aufruf: $,\&' < ID>^5 ,M' < channel>^5 CR$

Antwort: ,\$'_<ID>5_,M'_<channel>5_<value>5 CR

<ID>5
Geräteadresse (5-stellig dezimal mit führenden Nullen)

<channel>5 gibt die Kanalnummer an (5-stellig dezimal mit führenden Nullen)

<value>5 Messwert (5-stellig dezimal mit führenden Nullen); ein auf 0 – 65520d normierter

Messwert. Von 65521d – 65535d sind diverse Fehlercodes definiert

Beispiel:

Aufruf: & 04519 M 00001

Mit diesem Aufruf wird Kanal 1 von dem Gerät mit der Adresse 4591 (Straßensensor mit der Geräte-ID 0423; siehe Seite 10) abgefragt.

Antwort: \$ 04519 M 00001 36789

Angenommen dieser Kanal gibt eine Temperatur von –20 bis +100°C dann ergibt sich folgende Rechnung:

0d entspricht -20°C 65520d entspricht +100°C

36789d entspricht $[+100^{\circ}C - (-20^{\circ}C)] / 65520 * 36789 + (-20^{\circ}C) = 47,379^{\circ}C$

Bemerkung: In der Gerätebeschreibung ist spezifiziert, auf welchem Kanal welcher Messwert in welcher Normierung ausgegeben wird.

Achtung: Im ASCII-Protokoll stehen keine TLS-Kanäle zur Verfügung!

4.1.3 Protokollwechsel (X)

Beschreibung: Mit dem Kommando wird temporär in den Binär-Mode umgeschaltet.

Aufruf: ,&'_<ID>_,X' CR **Antwort:** ,\$'_<ID>_,X' CR

<ID>5 Geräteadresse (5-stellig dezimal mit führenden Nullen)

Bemerkung: ACHTUNG!! Unmittelbar nach der Antwort kann das Gerät nur noch über das Binär-Protokoll angesprochen werden. Soll das Gerät wieder im ASCII-Mode arbeiten, muss mit dem Binär-Kommando für Protokollwechsel in den ASCII-Mode geschaltet werden!

Die Protokollumschaltung ist **temporär**!! Nach einem Reset oder einem gerätespezifischen Timeout kommuniziert das Gerät wieder in dem zuvor eingestellten Mode! Soll das Gerät dauerhaft im z.B. Binär-Mode betrieben werden, muss die Gerätekonfiguration im EEPROM geändert werden!

4.1.4 Reset / Default (R)

Beschreibung: Mit dem Kommando wird ein Softwarereset ausgelöst. Alternativ kann vor dem Reset der Auslieferungszustand wiederhergestellt werden.

Aufruf: ,&'_<ID>_,R'_<reset> CR

Antwort: ,\$'_<ID>_,R' CR

<ID>5
Geräteadresse (5-stellig dezimal mit führenden Nullen)

<reset>3 010: Reset; 011: Reset mit Default

Bemerkung: Die Antwort erfolgt unmittelbar vor dem Reset.

4.1.5 Reset mit Verzögerung (D)

Beschreibung: Mit dem Kommando wird ein Softwarereset nach Ablauf der Verzögerungszeit <delay> ausgelöst (z.B. für Firmware-Update).

Aufruf: ,&' <ID> ,D' <delay> CR

Antwort: ,\$'_<ID> ,D' CR

<ID>5 Geräteadresse (5-stellig dezimal mit führenden Nullen)

<delay>3 Verzögerungszeit in Sekunden (max. 255)

Bemerkung: Die Antwort erfolgt zu Beginn der Verzögerungszeit.

4.1.6 Geräteinformation (I)

Beschreibung: Mit dem Kommando wird in den Binär-Mode umgeschaltet.

Aufruf: ,&'_<ID>_,I' CR

Antwort: ,\$'_<ID>_,I'_<Lfd.-Nr>_<MMJJ>_<Projekt>_<Stüli>_<SPlan>_<hardware>

<software><e2version>_<geräteversion> CR

</D>5 Geräteadresse (5-stellig dezimal mit führenden Nullen)

4.2 Errorcodes im ASCII-Protokoll

Oberhalb der Normierung für die Messwertausgabe sind von 65521d – 65535d diverse Fehlercodes definiert.

Codes:

<code></code>	Beschreibung
65521d	ungültiger Kanal
65522d	
65523d	Value Overflow
65524d	Value Underflow
65525d	
65526d	
65527d	
65528d	
65529d	
65530d	
65531d	
65532d	
65533d	
65534d	ungültige Kalibrierung
65535d	unbekannter Fehler

5 Anhang

5.1 CRC-Berechung

Berechnung der CRC erfolgt nach folgenden Regeln:

Norm: CRC-CCITT

Polynom: $1021h = x^{16} + x^{12} + x^5 + 1$ (LSB-first-Mode)

Startwert: FFFFh

(Achtung! Im Gegensatz zu früheren Lufft-Protokollen ist hier der Startwert für die CRC-Berechnungen nicht 0h sondern FFFFh nach CCITT!!)

5.1.1 Beispiel einer CRC-CCITT-Berechnung in C

Soll die CRC-Berechnung für mehrere Bytes erfolgen, muss die bisher berechnete CRC in einer unsigned short-Variable (die zu Beginn einer Prüfreihe auf FFFFh initialisiert werden muss) zwischengespeichert werden.

```
/************************
Funktion: 16 Bit CRC-CCITT-Berechnung
Aufruf: calc crc(unsigned short crc buff, unsigned char input)
Rückgabe: Neu berechnete 16-Bit CRC-Prüfsumme
Beschreibung: Berechnet nach dem CRC-Polynom x^16 + x^12 + x^5 + 1 die
             Prüfsumme für 'input'.
             'crc buff' ist die bisher berechnete Prüfsumme. Diese muss
            zu Beginn einer Prüfreihe auf OxFFFF gesetzt werden.
unsigned short calc crc(unsigned short crc buff, unsigned char input)
{
     unsigned char i;
     unsigned short x16; // we'll use this to hold the XOR mask
     for (i=0; i<8; i++)</pre>
           // XOR current DO and next input bit to determine x16 value
           if( (crc buff & 0x0001) ^ (input & 0x01) )
                x16 = 0x8408;
           else
                x16 = 0x0000;
           // shift crc buffer
           crc buff = crc buff >> 1;
           // XOR in the x16 value
           crc buff ^= x16;
           // shift input for next iteration
           input = input >> 1;
     return(crc buff);
```


Output:

5.2 Automatisches auslesen eines Netzwerks

In diesem Abschnitt wird ein Mechanismus beschrieben, der es ermöglicht ein bestehendes Netzwert zu analysieren, um damit die Master-Software zu konfigurieren.

5.2.1 Hintergrund

Da es sich hier um ein halbduplexes Netz auf RS485-Basis ohne Kollisionserkennung handelt, muss das Master-Slave-Prinzip eingehalten werden. Um ein Netzwerk zu scannen, müsste der Master den gesamten Adressraum abfragen, was bei über 30000 möglichen Adressen zu lang dauern würde.

Stattdessen wird das System in folgender Weise konfiguriert, damit die Master-Software in kurzer Zeit das Netz scannen kann.

5.2.2 Notwendige ID-Konfiguration der Sensoren

Die Sensoren werden je Netzwerk und Geräteklasse mit bei 1 beginnenden Geräte-IDs versehen. Das entspricht auch dem Auslieferungszustand. Weitere Sensoren einer Geräteklasse werden mit aufsteigenden IDs (2, 3, 4, 5) versehen.

ட	\sim		n	\sim	١.
Г	H	15		ie	
_	_		М.	-	

Sensoren	Klassen-ID	empfohlene Geräte-ID
1. Straßensensor	1	1
2. Straßensensor	1	2
1. Regensensor	2	1
2. Regensensor	2	2
1. Sichtweite	3	1
2. Sichtweite	3	2
1. Temperatur-Feuchte	4	1
2. Temperatur-Feuchte	4	2
3. Temperatur-Feuchte	4	3
1. Wind	5	1

Da die unterschiedlichen Sensoren unterschiedliche Klassen IDs haben und sich die Adresse aus Klassen-ID und Geräte-ID zusammensetzt, hat jeder Teilnehmer eine eigene Adresse.

5.2.3 Scannen des Netzwerkes

Beim Scannen beginnt der Master die Sensoren mit jeweils aufsteigender Klassen- und Geräte-ID abzufragen. Dazu verwendet man ein Kommando, welches von jedem Sensor verstanden wird; z.B. Statusabfrage (26h).

Die Geräte-ID wird so lange erhöht, bis auf die Statusabfrage keine Antwort mehr empfangen wird. Dann wird die Klasse-ID erhöht und wieder mit Geräte-ID 1 begonnen.

5.3 Daten-Typen in UMB-Produkten nach TLS2002 FG3

Die Ausgabe von TLS-Daten orientiert sich an der DE-Block-Struktur. Die TLS-Ausgabe beschränkt sich auf den TLS-konforme Daten-Normierung nach FG3. Die Antwort auf eine Messwertabfrage von TLS-Daten enthält den UMB-Kanal und den Messwert. Die UMB-Kanäle erhalten einen Offset von +1000 gegenüber dem DE-Typ FG3. Bei mehrkanaligen Geräten erhöht sich der Offset um jeweils 1000.

8-Bit-Messwert:

Position	Bezeichnung	Erläuterung
Byte 1	Messwert	

16-Bit-Messwert:

Position	Bezeichnung	Erläuterung
Byte 1	Messwert	low Byte
Byte 2	Messwert	high Byte

5.3.1 Beispiel einer TLS-Messwertabfrage

Es soll z.B. ein Sichtweitenmessgerät die Sichtweite nach TLS ausgeben (16-Bit-Messwert). DE-Typ 60 (SW) ergibt UMB-Kanal 1060 = 0424h

Aufruf: $23h_{10h}[<channel>^2]$

23h_{10h}[24h, 04h]

Antwort: 23h_{10h}[00h, <channel>², <low byte>, <high byte>]

23h_{10h}[00h, 24h, 04h, E8h, 03h]

High Byte = 03h; Low Byte = E8h; ergibt 03E8h = 1000d = 1000 Meter Sichtweite

5.3.2 unterstützte TLS-DE-Typen FG3

DE-Typ	UMB-Kanal	Bedeutung	Format	Bereich	Auflös.	Codierung
Gerätekl	asse 1 Straße	nsensor				
49	1049	Ergebnismeldung Fahrbahnoberflächen- temperatur FBT	16 Bit	-30+80°C	0,1°C	80,0 = 800d = 0320h 0,0 = 0d = 0000h -0,1 = -1d = FFFFh -30,0 = -300d = FED4h
52	1052	Ergebnismeldung Restsalz RS	8 Bit	0%100%	1%	0% = 0d = 00h 100% = 100d = 64h FFh = nicht bestimmb.
65	1065	Ergebnismeldung Gefrier- temperatur GT	16 Bit	-300 °C	0,1°C	0,0 = 0d = 0000h -0,1 = -1d = FFFFh -30,0 = -300d = FED4h
67	1067	Ergebnismeldung Temperatur in Tiefe 1 TT1	16 Bit	- 30 + 80 °C	0,1 °C	80,0 = 800d = 0320h 0,0 = 0d = 0000h -0,1 = -1d = FFFFh -30,0 = -300d = FED4h
68	1068	Ergebnismeldung Temperatur in Tiefe 2 TT2	16 Bit	- 30 + 80 °C	0,1 °C	siehe TT1
70	1070	Ergebnismeldung Zustand der Fahrbahnoberfläche FBZ	8 Bit	0 255		siehe 5.3.3
72	1072	Ergebnismeldung Wasserfilmdicke WFD	16 bit	0,0010,00 mm	0,01 mm	0 = 0d = 0000h 10,00 = 1000d = 03E8h FFFFh = nicht bestimmb.
Gerätekl	asse 2 Regen	sensor			•	
53	1053	Ergebnismeldung Nieder- schlagsintensität NI	16 Bit	0 200 mm/h	0,1 mm/h	0,0 = 0d = 0000h 200,0 = 2000d = 07D0h
71	1071	Ergebnismeldung Nieder- schlagsart NS	8 Bit	0 255		0d = kein Niederschlag 60d = Regen (inkl. Eisregen und Schneeregen) 70d = Schnee (inkl. Hagel) siehe auch 5.3.4
Gerätekl	asse 3 Sichtw	eitenmesser		•		
60	1060	Ergebnismeldung Sichtweite SW	16 Bit	10 1000 m	1 m	10 = 10d = 000Ah 1000 = 1000d = 03E8h
Gerätekl	asse 4 Tempe	ratur-Feuchte				
Gerätekl	asse 5 Windm	nesser				

DE-Typ	UMB-Kanal	Bedeutung	Format	Bereich	Auflös.	Codierung
Gerätekla	asse 6 univers	selle Messtransmitter z.B. A	ANACON	(Kanalbelegung	ist konfigura	tionsabhängig)
48	1048	Ergebnismeldung Lufttemperatur LT	16 Bit	-30 +60°C	0,1°C	60,0 = 600d = 0258h 0,0 = 0d = 0000h -0,1 = -1d = FFFFh -30,0 = -300d = FED4h
53	1053	Ergebnismeldung Nieder- schlagsintensität NI CH1	16 Bit	0 200 mm/h	0,1 mm/h	0,0 = 0d = 0000h 200,0 = 2000d = 07D0h
	2053	Ergebnismeldung Nieder- schlagsintensität NI CH2				
54	1054	Ergebnismeldung Luftdruck LD CH1	16 Bit	8001200 hPa	1 hPa	800 = 800d = 0320h 1200 = 1200d = 04B0h
	2054	Ergebnismeldung Luftdruck LD CH2				
55	1055	Ergebnismeldung Relative Luftfeuchte RLF	8 Bit	10% 100%	1% rF	10% = 10d = 0Ah 100% = 100d = 64h
56	1056	Ergebnismeldung Windrichtung WR	16 Bit	0 359°	1°	0° (N) = 0d = 0000h 90° (O) = 90d = 005Ah 180° (S) = 180d = 00B4h 270° (W) = 270d = 010Eh FFFFh = nicht bestimmb.
57	1057	Ergebnismeldung Windgeschw. (Mittelw.) WGM	16 Bit	0,0 60,0 m/s	0,1 m/s	0,0 = 0d = 0000h 60,0 = 600d = 0258h
64	1064	Ergebnismeldung Windgeschw. (Spitzenw.) WGS	16 Bit	0,0 60,0 m/s	0,1 m/s	0,0 = 0d = 0000h 60,0 = 600d = 0258h
66	1066	Ergebnismeldung Taupunkttemperatur TPT	16 Bit	-30 +60°C	0,1°C	60,0 = 600d = 0258h 0,0 = 0d = 0000h -0,1 = -1d = FFFFh -30,0 = -300d = FED4h
140	1140 1145	Betriebsmeldung Türkontakt TK CH1	8 Bit	0 1	1	siehe 5.3.5
	2140 2145	Betriebsmeldung Türkontakt TK CH2				

Bei DE-Typen, welche auf beiden Messkanälen des ANACON gemessen werden können, ist der UMB-Kanal-Offset für CH1 DE-Typ +1000 und für CH2 DE-Typ +2000

DE-Typ	UMB-Kanal	Bedeutung	Format		Auflös.	Codierung
	asse 7 Kompa	akt-Wetterstation z.B. WSx	(Kanalbel	egung ist konfig	urationsabha	ingig)
48	1048	Ergebnismeldung Lufttemperatur LT	16 Bit	-30 +60°C	0,1°C	60,0 = 600d = 0258h 0,0 = 0d = 0000h -0,1 = -1d = FFFFh -30,0 = -300d = FED4h
53	1053	Ergebnismeldung Nieder- schlagsintensität NI	16 Bit	0 200 mm/h	0,1 mm/h	0,0 = 0d = 0000h 200,0 = 2000d = 07D0h
54	1054	Ergebnismeldung Luftdruck LD	16 Bit	8001200 hPa	1 hPa	800 = 800d = 0320h 1200 = 1200d = 04B0h
55	1055	Ergebnismeldung Relative Luftfeuchte RLF	8 Bit	10% 100%	1% rF	10% = 10d = 0Ah 100% = 100d = 64h
56	1056	Ergebnismeldung Windrichtung WR	16 Bit	0 359°	1°	0° (N) = 0d = 0000h 90° (O) = 90d = 005Ah 180° (S) = 180d = 00B4h 270° (W) = 270d = 010Eh FFFFh = nicht bestimmb.
57	1057	Ergebnismeldung Windgeschw. (Mittelw.) WGM	16 Bit	0,0 60,0 m/s	0,1 m/s	0,0 = 0d = 0000h 60,0 = 600d = 0258h
64	1064	Ergebnismeldung Windgeschw. (Spitzenw.) WGS	16 Bit	0,0 60,0 m/s	0,1 m/s	0,0 = 0d = 0000h 60,0 = 600d = 0258h
66	1066	Ergebnismeldung Taupunkttemperatur TPT	16 Bit	-30 +60°C	0,1°C	60,0 = 600d = 0258h 0,0 = 0d = 0000h -0,1 = -1d = FFFFh -30,0 = -300d = FED4h
71	1071	Ergebnismeldung Niederschlagsart (NS)	8 Bit			0 = kein Niederschlag 60 = Regen (inkl. Eisregen und Schneeregen) 70 = Schnee (inkl. Hagel)

Abgeleitete Größen

1153	float	Niederschlagsintensität in Inch/h Abgeleitet aus Kanal 1053 (TLS-Code DE Typ 53 FG3)	07.874 Inch/h
1253	float	Niederschlagsintensität in mil/h Abgeleitet aus Kanal 1053 (TLS-Code DE Typ 53 FG3)	07 874 mil/h

5.3.3 DE-Typ 70 "Zustand der Fahrbahnoberfläche" (FBZ)

Inhalt bzw.	Definition
Ausprägung 0	Fahrbahn ist vollkommen Trocken (< ca. 30 ml/m² = 0,03 mm), schnee- und eisfrei
1	Fahrbahn ist feucht bzw. nass, oder schnee- oder eisbedeckt. Die Benetzung bzw.
	Bedeckung übersteigt ca. 30 ml/m ² = 0,03 mm.
	Nähere Differenzierung der Bedeckungsart nicht möglich.
2 31	frei für Erweiterungen
32	Fahrbahn ist benetzt mit flüssigem Wasser bzw. wässriger Lösung.
	Die Menge übersteigt ca. 30 ml/m ² = 0,03 mm.
	Nähere Differenzierung nicht möglich.
33 63	frei für Erweiterungen
64	Fahrbahn ist bedeckt mit gefrorenem Wasser bzw. wässriger Lösung in festem
	Zustand. Weitere Differenzierung nicht möglich.
65	Fahrbahn ist bedeckt mit Schnee oder Schneematsch. Gemisch von flüssigem und
	gefrorenem Wasser bzw. wässriger Lösung.
66	Fahrbahn ist bedeckt mit Eis (festes, gefrorenes Wasser bzw. gefrorene wässrige
	Lösung)
67	Fahrbahn ist bedeckt mit Rauhreif. Aus der Luft sublimierte Eiskristalle ohne
	deckende Eisfläche. Die Taupunkttemperatur liegt nahe der Fahrbahnoberflächen-
	Temperatur und liegt unter der Gefriertemperatur.
68 127	frei für Erweiterungen
128 254	frei für hersteller- oder anwendungsspezifische Codes
255	Sensorik kann auf Grund der herrschenden Bedingungen Zustand nicht bestimmen.

Es ist zu beachten, dass in Relation zur Strecke die Messung immer nur punktförmig sein kann und daher die Ergebnisse entsprechend interpretiert werden müssen.

Die Benetzung bzw. Bedeckung wird immer bezogen auf eine glatte ebene Fläche. Die Einschätzung der Gefährlichkeit einer Benetzung oder Bedeckung in Bezug zur Beschaffenheit des Fahrbahnbelags (Rauhigkeit etc.) und den besonderen Bedingungen der betreffenden Straßenstrecke muss in der Zentrale vorgenommen werden.

Es ist nicht erforderlich, dass die Sensortechnik alle Zustände direkt als solches detektieren kann. Es genügt vielmehr, wenn die zur Bildung der Zustände beitragenden Einflüsse gemessen werden können, so dass der betreffende Zustand als wahrscheinlich angenommen werden kann.

Von einer Fahrbahnmessstelle müssen nicht alle Ausprägungen unterstützt werden.

Die Menge der Benetzung bzw. Bedeckung, soweit bestimmbar, wird durch die "Wasserfilmdicke" (mm bzw. $1/m^2$) angegeben.

5.3.4 DE-Typ 71 "Niederschlagsart" (NS)

Inhalt bzw.	Definition			
Ausprägung				
alle	In der Atmosphäre fallender Niederschlag.			
	Wird gleichzeitig Niederschlagsintensität ermittelt, ist diese an der gleichen Stelle			
	vorzunehmen.			
	Es werden die Klassifikation und die Codes nach WMO Tabelle 4680 verwendet.			
0	kein Niederschlag			
1 39	nicht benutzen			
40	Niederschlag aller Art			
	Nicht näher Klassifizier- und quantifizierbar oder Sensorik nicht dafür ausgelegt			
41	Leichter oder mittlerer Niederschlag aller Art (< 50 Partikel/Minute)			
42	Starker Niederschlag aller Art (> 50 Partikel/Minute)			
43 49	frei für Erweiterungen			
50	Sprühregen			
	(keine weitere Klassifikation von Sprühregen möglich)			
51 59	weitere Klassifikation von Sprühregen n. WMO			
60	Regen bzw. flüssiger Niederschlag			
	(Keine weitere Klassifikation von Regen möglich)			
61 69	Weitere Klassifikation von Regen n. WMO			
70	Schnee bzw. gefrorener Niederschlag			
	(Keine weitere Klassifikation von gefrorenem Niederschlag möglich)			
71 73	Weiter Klassifikation von Schnee n. WMO			
74 76	Weitere Klassifikation von Graupel n. WMO			
77 79	Weitere Klassifikation von Hagel n. WMO			
80 127	frei für Erweiterungen			
128 254	frei für hersteller- und anwendungsspez. Erweiterungen			
255	Sensorik kann auf Grund der herrschenden Bedingungen Zustand nicht bestimmen			

Es wird darauf hingewiesen, dass von der Streckenstation bzw. der Sensorik nicht alle Ausprägungen unterstützt werden müssen. Welcher Differenzierungsgrad notwendig und sinnvoll ist, hängt von der Anwendung ab. Bei einfachen Anwendungen können die Ausprägungen 0 und 40, bei normalen Anforderungen 0, 60 und 70 (entspricht den bisher verwendeten Ausprägungen 00, 01, 02 des Typs 63) ausreichen.

5.3.5 DE-Typ 140 "Türkontakt" (TK)

Das sich dieses System auf FG3-Daten beschränkt, der Türkontakt aber in FG6 als DE-Typ 48 definiert ist, wird DE-Typ 140 als Türkontakt-Meldung in FG3 verwendet, wenn diese Meldung als einzige Betriebsmeldung vorhanden sein soll.

DE-Typ		Bedeutung	Format	Bereich	Auflös.	
140	1140	Betriebsmeldung	8 Bit	0 1	1	00 = 0d = 00h
	2140	Türkontakt TK				01 = 1d = 01h

	Inhalt	Definition	Schalter-Kontakt
Ī	0	Tür geschlossen	offen
	1	Tür geöffnet	geschlossen

5.3.6 DE-Typ 140 "Türkontakt" (TK) invertiert

DE-Typ	UMB-Kanal	Bedeutung	Format		Auflös.	Codierung
140	1145	Betriebsmeldung	8 Bit	0 1	1	00 = 0d = 00h
	2145	Türkontakt TK invertiert				01 = 1d = 01h

Inhalt	Definition	Schalter-Kontakt
0	Tür geschlossen	geschlossen
1	Tür geöffnet	offen

5.4 Zeichentabelle für Textausgaben

Die Ausgabe der Zeichen für Textausgaben aller Art erfolgt nach der ASCII-Codetabelle mit der Erweiterung nach ISO-8859-1 (Latin-1):

ASCII-Codetabelle										
+	0	1	2	3	4	5	6	7	8	Ø
30					rr	#	\$	0/0	&	T
40	()	*	+	*	ı	•	/	0	1
50	2	ന	4	5	6	7	8	9	••	;
60	~	=	^	?	9	Α	В	С	D	E
70	F	U	Н	I	J	K	L	М	Ν	0
80	Ρ	\bigcirc	R	អ	Т	D	٧	B	Х	Y
90	Z	[/]	<	١	/	а	b	С
100	d	Ψ	f	g	h	i	j	k	1	m
110	n	0	q	q	r	ហ	t	u	٧	w
120	Х	У	Z	{		}	?			

iso-8	iso-8859-1										
+	0	1	2	3	4	5	6	7	8	9	
160		·	Ф	£	н	¥		ധാ		0	
170	a	«	Г	ı	Ø	ı	٥	±	а	3	
180	1	μ	•	•	1	1	10	»	14	¥	
190	%	-0	Ά	íΑ	Â	Ã	Ä	Å	Æ	Ç	
200	È	'nШ	ίLI	:Ш	Ì	Í	Î	Ϊ	Ð	Ñ	
210	ò	Ó	ô	ìO	:0	×	Ø	' =>	Ú	Û	
220	Ü	\hookrightarrow	Δ	Θ	/Œ	١œ	œ	≀æ	:а	å	
230	æ	O	/ω	'nω	œ	:ω	í	í	î	ï	
240	ð	ñ	'n.	ó	ô	õ	ö	+	Ø	ù	
250	ú	œ	:3	S	Φ	:51					